2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Capture of CO 2 by Melamine Derivatives: A DFT Study Combining the Relative Energy Gradient Method with an Interaction Energy Partitioning Scheme

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A theoretical study of the interaction between melamine and CO 2 was carried out using density functional theory (DFT) with the B3LYP-D3(BJ)/aug-cc-pVTZ level of theory. The presence of anions interacting with melamine transforms the weakly bonded tetrel complexes into adducts. Thus, melamine acts as an FLP (frustrated Lewis pair) with acid groups (NHs as hydrogen bond donors) and a base group (N of the triazine ring). The application of the relative energy gradient formalism (REG) along the reaction coordinate has demonstrated that the ability of the melamine-anion systems to capture CO 2 is linked to its capacity to polarize the CO 2 molecule. These results have been confirmed by placing the melamine:CO 2 complex in a uniform electric field with different strengths.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiwfn: a multifunctional wavefunction analyzer.

            Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. Copyright © 2011 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of the damping function in dispersion corrected density functional theory.

              It is shown by an extensive benchmark on molecular energy data that the mathematical form of the damping function in DFT-D methods has only a minor impact on the quality of the results. For 12 different functionals, a standard "zero-damping" formula and rational damping to finite values for small interatomic distances according to Becke and Johnson (BJ-damping) has been tested. The same (DFT-D3) scheme for the computation of the dispersion coefficients is used. The BJ-damping requires one fit parameter more for each functional (three instead of two) but has the advantage of avoiding repulsive interatomic forces at shorter distances. With BJ-damping better results for nonbonded distances and more clear effects of intramolecular dispersion in four representative molecular structures are found. For the noncovalently-bonded structures in the S22 set, both schemes lead to very similar intermolecular distances. For noncovalent interaction energies BJ-damping performs slightly better but both variants can be recommended in general. The exception to this is Hartree-Fock that can be recommended only in the BJ-variant and which is then close to the accuracy of corrected GGAs for non-covalent interactions. According to the thermodynamic benchmarks BJ-damping is more accurate especially for medium-range electron correlation problems and only small and practically insignificant double-counting effects are observed. It seems to provide a physically correct short-range behavior of correlation/dispersion even with unmodified standard functionals. In any case, the differences between the two methods are much smaller than the overall dispersion effect and often also smaller than the influence of the underlying density functional. Copyright © 2011 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                J Phys Chem A
                J Phys Chem A
                jx
                jpcafh
                The Journal of Physical Chemistry. a
                American Chemical Society
                1089-5639
                1520-5215
                13 February 2024
                22 February 2024
                : 128
                : 7
                : 1288-1296
                Affiliations
                []Instituto de Química Médica (CSIC) , Juan de la Cierva, 3, E-28006 Madrid, Spain
                []PhD Program in Theoretical Chemistry and Computational Modeling, Doctoral School, Universidad Autónoma de Madrid , 28049 Madrid, Spain
                [§ ]Instituto de Química-Física “Blas-Cabrera” (CSIC) , Serrano, 119, E-28006 Madrid, Spain
                Author notes
                Author information
                https://orcid.org/0000-0001-6876-6211
                https://orcid.org/0000-0002-9213-6858
                https://orcid.org/0000-0001-9108-8615
                Article
                10.1021/acs.jpca.3c08412
                10895662
                38351470
                013c4b1d-4967-4bd2-a498-f2a4b4c7b2e2
                © 2024 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 26 December 2023
                : 31 January 2024
                : 26 January 2024
                Funding
                Funded by: Ministerio de Ciencia, Innovación y Universidades, doi 10.13039/100014440;
                Award ID: PID2021-125207NB-C32
                Categories
                Article
                Custom metadata
                jp3c08412
                jp3c08412

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article