14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How (Un)sustainable Environments Are Related to the Diffusion of COVID-19: The Relation between Coronavirus Disease 2019, Air Pollution, Wind Resource and Energy

      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pandemic caused by novel coronavirus disease 2019 (COVID-19) is generating a high number of cases and deaths, with negative effects on public health and economic systems. One of the current questions in the contemporary environmental and sustainability debate is how high air pollution and reduced use of renewable energy can affect the diffusion of COVID-19. This study endeavors to explain the relation between days of air pollution, wind resources and energy, and the diffusion of COVID-19 to provide insights into sustainable policy to prevent future epidemics. The statistical analysis here focuses on a case study of Italy, one of the first countries to experience a rapid increase in confirmed cases and deaths. The results reveal two main findings: (1) cities with high wind speed and high wind energy production have a lower number of cases of COVID-19 in the context of a more sustainable environment; (2) cities located in hinterland zones with high air pollution, low wind speed and less wind energy production have a greater number of cases and total deaths. The results presented here suggest that the pandemic caused by novel coronavirus (SARS-CoV-2) and future epidemics similar to COVID-19 cannot be solved only with research in medicine but the solution also needs advanced capabilities and technologies for supporting sustainable development based on the reduction of air pollution and increase of production in renewable energy to improve air quality and as a consequence public health.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

          To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID

            This study has two goals. The first is to explain the geo-environmental determinants of the accelerated diffusion of COVID-19 in Italy that is generating a high level of deaths. The second is to suggest a strategy to cope with future epidemic threats having accelerated viral infectivity in society. Using data on N = 55 Italian province capitals, and data of infected individuals at as of April 7th, 2020, results reveal that the accelerate and vast diffusion of COVID-19 in North Italy has a high association with air pollution of cities measured with days exceeding the limits set for PM10 (particulate matter 10 μm or less in diameter) or ozone in previous years. In particular, hinterland cities with average higher number of days exceeding the limits set for PM10 (and a low intensity of wind speed) have a very high number of infected people on 7th April 2020 (arithmetic mean about 2200 infected, with average polluted days greater than 80), than coastal cities also having days of exceeding the limits set for PM10 or ozone but with high intensity of wind speed (arithmetic mean about 944.70 infected individuals, with about 60 average polluted days); moreover, cities having more than 100 days of air pollution (exceeding the limits set for PM10), they have a very high average number of infected people (about 3350 infected individuals, 7th April 2020), whereas cities having less than 100 days of air pollution, they have a lower average number of infected individuals (about 1014). The findings here also suggest that to minimize the impact of future epidemics similar to COVID-19, the max number of days per year in which Italian provincial capitals can exceed the limits set for PM10 or for ozone, considering their meteorological conditions, is about 48 days. Moreover, results here reveal that the explanatory variable of air pollution in cities under study seems to be a more important predictor in the initial phase of diffusion (on 17th March 2020, b1 = 1.27, p < 0.001) than interpersonal contacts (b2 = 0.31, p < 0.05). In the second phase of maturity of the transmission dynamics of COVID-19, air pollution reduces intensity (on 7th April 2020 with b′1 = 0.81, p < 0.001) also because of indirect effect of lockdown, whereas coefficient of transmission by interpersonal contacts has stability (b′2 = 0.31, p < 0.01). This result reveals that accelerated transmissions dynamics of COVID-19 is due to mainly to the mechanism of “air pollution-to-human transmission” rather than “human-to-human transmission”. Overall, then, transmission dynamics of viral infectivity, such as COVID-19, is due to systemic causes: general factors that are the same for all regions (e.g., biological characteristics of virus, incubation period, etc.) and specific factors which are different for each region (e.g., complex interaction between air pollution, meteorological conditions and biological characteristics of viral infectivity) and health level of individuals (habits, immune system, age, sex, etc.). Lessons learned for COVID-19 in the case study of Italy suggest that a proactive strategy to cope with future epidemics is to also apply especially an environmental and sustainable policy based on reduction of levels of air pollution mainly in hinterland and polluting cities- having low wind speed, high percentage of moisture and fog days-that seem to have an environment that may damage immune system of people and foster a fast transmission dynamics of viral infectivity in society. Hence, in the presence of polluting industrialization in regions that can trigger the mechanism of air pollution-to-human transmission dynamics of viral infectivity, this study must conclude that a comprehensive strategy to prevent future epidemics similar to COVID-19 has to be also designed in environmental and socioeconomic terms, that is also based on sustainability science and environmental science, and not only in terms of biology, healthcare and health sector.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management

              Since the early days of the COVID-19 crisis the scientific community has constantly been striving to shed light on various issues such as the mechanisms driving the spread of the virus, its environmental and socio-economic impacts, and necessary recovery and adaptation plans and policies. Given the high concentration of population and economic activities in cities, they are often hotspots of COVID-19 infections. Accordingly, many researchers are struggling to explore the dynamics of the pandemic in urban areas to understand impacts of COVID-19 on cities. In this study we seek to provide an overview of COVID-19 research related to cities by reviewing literature published during the first eight months after the first confirmed cases were reported in Wuhan, China. The main aims are to understand impacts of the pandemic on cities and to highlight major lessons that can be learned for post-COVID urban planning and design. Results show that, in terms of thematic focus, early research on the impacts of COVID-19 on cities is mainly related to four major themes, namely, (1) environmental quality, (2) socio-economic impacts, (3) management and governance, and (4) transportation and urban design. While this indicates a diverse research agenda, the first theme that is consisted of issues related to air quality, meteorological parameters, and water quality is dominant, and the others are still relatively underexplored. Improvements in air and water quality in cities during lockdown periods highlight the significant environmental impacts of anthropogenic activities and provide a wake-up call to adopt environmentally friendly development pathways. The paper also provides other recommendation related to the socio-economic factors, urban management and governance, and transportation and urban design that can be used for post-COVID urban planning and design. Overall, existing knowledge shows that the COVID-19 crisis entails an excellent opportunity for planners and policy makers to take transformative actions towards creating cities that are more just, resilient, and sustainable.
                Bookmark

                Author and article information

                Contributors
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                November 2020
                November 20 2020
                : 12
                : 22
                : 9709
                Article
                10.3390/su12229709
                01733be0-2adb-4c6e-82b1-d02f3b506150
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article