4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low dose novel PARP-PI3K inhibition via nanoformulation improves colorectal cancer immunoradiotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multimodal therapy is often used in oncology to overcome dosing limitations and chemoresistance. Recently, combination immunoradiotherapy has shown great promise in a select subset of patients with colorectal cancer (CRC). Furthermore, molecularly targeted agents delivered in tandem with immunotherapy regimens have been suggested to improve treatment outcomes and expand the population of responding patients. In this study, radiation-sensitizing small molecules niraparib (PARP inhibitor) and HS-173 (PI3K inhibitor) are identified as a novel combination that synergistically enhance toxicity and induce immunogenic cell death both in vitro and in vivo in a CRC model. These inhibitors were co-encapsulated in a polymer micelle to overcome solubility limitations while minimizing off-target toxicity. Mice bearing syngeneic colorectal tumors (CT26) were administered these therapeutic micelles in combination with X-ray irradiation and anti-CTLA-4 immunotherapy. This combination led to enhanced efficacy demonstrated by improved tumor control and increased tumor infiltrating lymphocytes. This report represents the first investigation of DNA damage repair inhibition combined with radiation to potentiate anti-CTLA-4 immunotherapy in a CRC model.

          Graphical abstract

          Highlights

          • A novel combination of PARP and PI3K inhibitors induce radiosensitization in vitro and immunogenic cell death in vitro and in vivo.

          • Encapsulation of both niraparib and HS-173 in poly(2-oxazoline) micelles allows for co-delivery to colorectal cancer tumors

          • This nanoformulation combined with radiation improve CTLA-4 therapy by tumor growth delay and potentially increase the responding population.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Drug combination studies and their synergy quantification using the Chou-Talalay method.

          This brief perspective article focuses on the most common errors and pitfalls, as well as the do's and don'ts in drug combination studies, in terms of experimental design, data acquisition, data interpretation, and computerized simulation. The Chou-Talalay method for drug combination is based on the median-effect equation, derived from the mass-action law principle, which is the unified theory that provides the common link between single entity and multiple entities, and first order and higher order dynamics. This general equation encompasses the Michaelis-Menten, Hill, Henderson-Hasselbalch, and Scatchard equations in biochemistry and biophysics. The resulting combination index (CI) theorem of Chou-Talalay offers quantitative definition for additive effect (CI = 1), synergism (CI 1) in drug combinations. This theory also provides algorithms for automated computer simulation for synergism and/or antagonism at any effect and dose level, as shown in the CI plot and isobologram, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair–Deficient/Microsatellite Instability–High Metastatic Colorectal Cancer

            Purpose Nivolumab provides clinical benefit (objective response rate [ORR], 31%; 95% CI, 20.8 to 42.9; disease control rate, 69%; 12-month overall survival [OS], 73%) in previously treated patients with DNA mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC); nivolumab plus ipilimumab may improve these outcomes. Efficacy and safety results for the nivolumab plus ipilimumab cohort of CheckMate-142, the largest single-study report of an immunotherapy combination in dMMR/MSI-H mCRC, are reported. Patients and Methods Patients received nivolumab 3 mg/kg plus ipilimumab 1 mg/kg once every 3 weeks (four doses) followed by nivolumab 3 mg/kg once every 2 weeks. Primary end point was investigator-assessed ORR. Results Of 119 patients, 76% had received ≥ two prior systemic therapies. At median follow-up of 13.4 months, investigator-assessed ORR was 55% (95% CI, 45.2 to 63.8), and disease control rate for ≥ 12 weeks was 80%. Median duration of response was not reached; most responses (94%) were ongoing at data cutoff. Progression-free survival rates were 76% (9 months) and 71% (12 months); respective OS rates were 87% and 85%. Statistically significant and clinically meaningful improvements were observed in patient-reported outcomes, including functioning, symptoms, and quality of life. Grade 3 to 4 treatment-related adverse events (AEs) occurred in 32% of patients and were manageable. Patients (13%) who discontinued treatment because of study drug-related AEs had an ORR (63%) consistent with that of the overall population. Conclusion Nivolumab plus ipilimumab demonstrated high response rates, encouraging progression-free survival and OS at 12 months, manageable safety, and meaningful improvements in key patient-reported outcomes. Indirect comparisons suggest combination therapy provides improved efficacy relative to anti-programmed death-1 monotherapy and has a favorable benefit-risk profile. Nivolumab plus ipilimumab provides a promising new treatment option for patients with dMMR/MSI-H mCRC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calreticulin exposure dictates the immunogenicity of cancer cell death.

              Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mater Today Bio
                Mater Today Bio
                Materials Today Bio
                Elsevier
                2590-0064
                22 October 2020
                September 2020
                22 October 2020
                : 8
                : 100082
                Affiliations
                [a ]Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, 97201, OR, USA
                [b ]Department of Chemistry and Pharmacy, University Würzburg, Röntgenring 11, Würzburg, 97070, Germany
                [c ]Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, 97201, OR, USA
                [d ]Soft Matter Chemistry, Department of Chemistry, University of Helsinki, Helsinki, 00014, Finland
                [e ]Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, 97239, OR, USA
                Author notes
                []Corresponding author. Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, 97201, OR, USA. sunc@ 123456ohsu.edu
                [f]

                Madeleine R. Landry and Allison N. DuRoss have contributed equally to this work.

                Article
                S2590-0064(20)30042-9 100082
                10.1016/j.mtbio.2020.100082
                7689338
                33294836
                017b0bc9-5ef6-4898-be53-391f5c89a459
                © 2020 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 27 July 2020
                : 20 September 2020
                : 8 October 2020
                Categories
                Full Length Article

                radiation therapy,immune checkpoint blockade,poly(2-oxazoline),nanomedicine,drug delivery

                Comments

                Comment on this article