19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Levels of Multiple Infections, Recombination and Horizontal Transmission of Wolbachia in the Andricus mukaigawae (Hymenoptera; Cynipidae) Communities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wolbachia are maternally inherited endosymbiotic bacteria of arthropods and nematodes. In arthropods, they manipulate the reproduction of their hosts to facilitate their own spread in host populations, causing cytoplasmic incompatibility, parthenogenesis induction, feminization of genetic males and male-killing. In this study, we investigated Wolbachia infection and studied wsp ( Wolbachia surface protein) sequences in three wasp species associated with the unisexual galls of A. mukaigawae with the aim of determining the transmission mode and the reason for multiple infections of Wolbachia. Frequency of Wolbachia infected populations for A. mukaigawae, Synergus japonicus (inquiline), and Torymus sp. (parasitoid) was 75%, 100%, and 100%, respectively. Multiple Wolbachia infections were detected in A. mukaigawae and S. japonicus, with 5 and 8 Wolbachia strains, respectively. The two host species shared 5 Wolbachia strains and were infected by identical strains in several locations, indicating horizontal transmission of Wolbachia. The transmission potentially takes place through gall tissues, which the larvae of both wasps feed on. Furthermore, three recombination events of Wolbachia were observed: the strains W 8, W 2 and W 6 apparently have derived from W 3 and W 5a, W 6 and W 7, W 4 and W 9, respectively. W 8 and W 2 and their respective parental strains were detected in S. japonicus. W 6 was detected with only one parent (W 4) in S. japonicus; W 9 was detected in Torymus sp., suggesting horizontal transmission between hosts and parasitoids. In conclusion, our research supports earlier studies that horizontal transmission of Wolbachia, a symbiont of the Rickettsiales order, may be plant-mediated or take place between hosts and parasitoids. Our research provides novel molecular evidence for multiple recombination events of Wolbachia in gall wasp communities. We suggest that genomic recombination and potential plant-mediated horizontal transmission may be attributable to the high levels of multiple Wolbachia infections observed in A. mukaigawae and S. japonicus.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism.

          Wolbachia is a genus of alpha-proteobacteria found in obligate intracellular association with a wide variety of arthropods, including an estimated 10-20% of all insect species [1]. Wolbachia represents one of a number of recently identified 'reproductive parasites' [2] which manipulate the reproduction of their hosts in ways that enhance their own transmission [3] [4] [5] [6] [7] [8] [9]. The influence of Wolbachia infection on the dynamics of host populations has focused considerable interest on its possible role in speciation through reproductive isolation [3] [10] [11] and as an agent of biological control [2] [12] [13]. Although Wolbachia normally undergoes vertical transmission through the maternal line of its host population [14], there is compelling evidence from molecular phylogenies that extensive horizontal (intertaxon) transmission must have occurred [1] [9] [15] [16] [17]. Some of the best candidate vectors for the horizontal transmission of Wolbachia are insect parasitoids [15], which comprise around 25% of all insect species and attack arthropods from an enormous range of taxa [18]. In this study, we used both fluorescence microscopy and PCR amplification with Wolbachia-specific primers to show that Wolbachia can be transmitted to a parasitic wasp (Leptopilina boulardi) from its infected host (Drosophila simulans) and subsequently undergo diminishing vertical transmission in this novel host species. These results are, to our knowledge, the first to reveal a natural horizontal transfer route for Wolbachia between phylogenetically distant insect species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Somatic stem cell niche tropism in Wolbachia.

            Wolbachia are intracellular bacteria found in the reproductive tissue of all major groups of arthropods. They are transmitted vertically from the female hosts to their offspring, in a pattern analogous to mitochondria inheritance. But Wolbachia phylogeny does not parallel that of the host, indicating that horizontal infectious transmission must also occur. Insect parasitoids are considered the most likely vectors, but the mechanism for horizontal transfer is largely unknown. Here we show that newly introduced Wolbachia cross several tissues and infect the germline of the adult Drosophila melanogaster female. Through investigation of bacterial migration patterns during the course of infection, we found that Wolbachia reach the germline through the somatic stem cell niche in the D. melanogaster germarium. In addition, our data suggest that Wolbachia are highly abundant in the somatic stem cell niche of long-term infected hosts, implying that this location may also contribute to efficient vertical transmission. This is, to our knowledge, the first report of an intracellular parasite displaying tropism for a stem cell niche.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Infectious parthenogenesis.

              Parthenogenesis-inducing Wolbachia bacteria are reproductive parasites that cause infected female wasps to produce daughters without mating. This manipulation of the host's reproduction enhances the transmission of Wolbachia to future generations because the bacteria are passed on vertically only from mothers to daughters. Males are dead ends for cytoplasmically inherited bacteria: they do not pass them on to their offspring. Vertical transmission of Wolbachia has been previously considered to be the main mode of transmission. Here we report frequent horizontal transmission from infected to uninfected wasp larvae sharing a common food source. The transferred Wolbachia are then vertically transmitted to the new host's offspring. This natural and unexpectedly frequent horizontal transfer of parthenogensis-inducing Wolbachia intraspecifically has important implications for the co-evolution of Wolbachia and their host.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                8 November 2013
                : 8
                : 11
                : e78970
                Affiliations
                [1 ]Laboratory of Insect Behavior and Evolutionary Ecology, Central South University of Forestry and Technology, Changsha, China
                [2 ]Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, United States of America
                University of Sussex, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XHY DHZ. Performed the experiments: XHY LZ CYS. Analyzed the data: XHY DHZ ZWL. Contributed reagents/materials/analysis tools: XHY LZ CYS. Wrote the paper: XHY DHZ ZWL.

                Article
                PONE-D-13-00895
                10.1371/journal.pone.0078970
                3826730
                24250820
                01aaefc6-263d-4f5a-991b-85e6c2d70397
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 December 2012
                : 18 September 2013
                Page count
                Pages: 11
                Funding
                This study was supported by the National Natural Science Foundation of China (NSFC grant no. 30872036) ( http://www.nsfc.gov.cn/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article