40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanism for Human Sperm Chemotaxis Mediated by Progesterone

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sperm chemotaxis is a chemical guiding mechanism that may orient spermatozoa to the egg surface. A picomolar concentration gradient of Progesterone (P), the main steroidal component secreted by the cumulus cells that surround the egg, attracts human spermatozoa. In order to elucidate the molecular mechanism of sperm chemotaxis mediated by P, we combine the application of different strategies: pharmacological inhibition of signaling molecules, measurements of the concentrations of second messengers and activation of the chemotactic signaling. Our data implicate a number of classic signal transduction pathways in the response and provide a model for the sequence of events, where the tmAC-cAMP-PKA pathway is activated first, followed by protein tyrosine phosphorylation (equatorial band and flagellum) and calcium mobilization (through IP 3R and SOC channels), whereas the sGC-cGMP-PKG cascade, is activated later. These events lead to sperm orientation towards the source of the chemoattractant. The finding proposes a molecular mechanism which contributes to the understanding of the signal transduction pathway that takes place in a physiological process as chemotaxis.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Specificity and mechanism of action of some commonly used protein kinase inhibitors.

          The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Store-operated calcium channels.

            In electrically nonexcitable cells, Ca(2+) influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca(2+) entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca(2+) stores activates Ca(2+) influx (store-operated Ca(2+) entry, or capacitative Ca(2+) entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca(2+) release-activated Ca(2+) current, I(CRAC). Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for I(CRAC)-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca(2+) content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca(2+) sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca(2+) entry. Recent work has revealed a central role for mitochondria in the regulation of I(CRAC), and this is particularly prominent under physiological conditions. I(CRAC) therefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of I(CRAC) and other store-operated Ca(2+) currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca(2+) entry pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor.

              Spermatozoa undergo a poorly understood activation process induced by bicarbonate and mediated by cyclic adenosine 3',5'-monophosphate (cAMP). It has been assumed that bicarbonate mediates its effects through changes in intracellular pH or membrane potential; however, we demonstrate here that bicarbonate directly stimulates mammalian soluble adenylyl cyclase (sAC) activity in vivo and in vitro in a pH-independent manner. sAC is most similar to adenylyl cyclases from cyanobacteria, and bicarbonate regulation of cyclase activity is conserved in these early forms of life. sAC is also expressed in other bicarbonate-responsive tissues, which suggests that bicarbonate regulation of cAMP signaling plays a fundamental role in many biological systems.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                8 December 2009
                : 4
                : 12
                : e8211
                Affiliations
                [1 ]Centro de Biología Celular y Molecular, Universidad Nacional de Córdoba, Córdoba, Argentina
                [2 ]Centro de Biotecnología de la Reproducción, Departamento de Ciencias Preclínicas, Universidad de La Frontera, Temuco, Chile
                [3 ]Centre for Dermatology and Andrology, Justus Liebig University, Giessen, Germany
                [4 ]School of Biosciences, University of Birmingham, Birmingham, United Kingdom
                New Mexico State University, United States of America
                Author notes

                Conceived and designed the experiments: MET RS WM LCG. Performed the experiments: MET HAG DRU AAMG. Analyzed the data: MET HAG DRU LCG. Contributed reagents/materials/analysis tools: RS WM SP LCG. Wrote the paper: MET SP LCG.

                Article
                09-PONE-RA-12173R1
                10.1371/journal.pone.0008211
                2782141
                19997608
                01ec8ed8-9624-4fc5-9970-1f7cce9a41b4
                Teves et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 August 2009
                : 31 October 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Cell Biology
                Cell Biology/Cell Signaling
                Developmental Biology/Germ Cells

                Uncategorized
                Uncategorized

                Comments

                Comment on this article