14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      WGCNA identification of TLR7 as a novel diagnostic biomarker, progression and prognostic indicator, and immunotherapeutic target for stomach adenocarcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stomach adenocarcinoma (STAD) is a malignant tumor with high histological heterogeneity. However, the potential mechanism of STAD tumorigenesis remains to be elucidated. The purpose of our research was to identify candidate genes associated with the diagnosis, progression, prognosis, and immunotherapeutic targets of STAD. Based on tumor samples from the GSE28541 dataset, weighted gene co‐expression network analysis revealed 16 modules related to STAD stage and grade. The salmon module emerged as the most relevant module (cor = 0.34), and functional enrichment analysis showed that the genes in the salmon were primarily related to major histocompatibility complex, immune response, and cell differentiation. Toll‐like receptor 7 (TLR7) was recognized as the real hub gene in the salmon module. Compared to normal stomach tissues, the transcriptional and translational levels of TLR7 were significantly elevated in STAD. Receiver operating characteristic curves verified that TLR7 displayed remarkable sensitivity and specificity for the diagnosis of STAD. The functions of TLR7 were primarily enriched in the regulation of Toll‐like receptor signaling pathway, pattern recognition receptor signaling pathway, and innate immune response. Overexpression of TLR7 tended to indicate more advanced STAD, higher degree of STAD, and poorer prognosis of STAD. In addition, TLR7 expression was positively correlated with immune cell infiltration and immune checkpoint expression. Somatic copy number alteration of TLR7 was also significantly related to immune cell infiltration. In conclusion, this study revealed the crucial role of TLR7 in STAD and provided new perspectives for the selection of biomarkers, progression and prognosis indicators, and immunotherapeutic targets for STAD.

          Abstract

          Combined with WGCNA analysis and data mining, TLR7 were found to be significantly associated with the progression and prognosis of STAD. TLR7 could serve as diagnostic biomarkers, prognostic indicatiors, and immunotherapeutic targets of stomach adenocarcinoma.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          WGCNA: an R package for weighted correlation network analysis

          Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells.

            Recent clinical successes of cancer immunotherapy necessitate the investigation of the interaction between malignant cells and the host immune system. However, elucidation of complex tumor-immune interactions presents major computational and experimental challenges. Here, we present Tumor Immune Estimation Resource (TIMER; cistrome.shinyapps.io/timer) to comprehensively investigate molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. TIMER provides 6 major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations. TIMER provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers. Cancer Res; 77(21); e108-10. ©2017 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              STRING v10: protein–protein interaction networks, integrated over the tree of life

              The many functional partnerships and interactions that occur between proteins are at the core of cellular processing and their systematic characterization helps to provide context in molecular systems biology. However, known and predicted interactions are scattered over multiple resources, and the available data exhibit notable differences in terms of quality and completeness. The STRING database (http://string-db.org) aims to provide a critical assessment and integration of protein–protein interactions, including direct (physical) as well as indirect (functional) associations. The new version 10.0 of STRING covers more than 2000 organisms, which has necessitated novel, scalable algorithms for transferring interaction information between organisms. For this purpose, we have introduced hierarchical and self-consistent orthology annotations for all interacting proteins, grouping the proteins into families at various levels of phylogenetic resolution. Further improvements in version 10.0 include a completely redesigned prediction pipeline for inferring protein–protein associations from co-expression data, an API interface for the R computing environment and improved statistical analysis for enrichment tests in user-provided networks.
                Bookmark

                Author and article information

                Contributors
                shangdong@dmu.edu.cn
                xiashilin@dmu.edu.cn
                Journal
                Cancer Med
                Cancer Med
                10.1002/(ISSN)2045-7634
                CAM4
                Cancer Medicine
                John Wiley and Sons Inc. (Hoboken )
                2045-7634
                12 May 2021
                June 2021
                : 10
                : 12 ( doiID: 10.1002/cam4.v10.12 )
                : 4004-4016
                Affiliations
                [ 1 ] Department of General Surgery The First Affiliated Hospital of Dalian Medical University Dalian, Liaoning China
                [ 2 ] Clinical Laboratory of Integrative Medicine The First Affiliated Hospital of Dalian Medical University Dalian, Liaoning China
                [ 3 ] Department of Immunology College of Basic Medical Science Dalian Medical University Dalian, Liaoning China
                [ 4 ] Department of Oncology The First Affiliated Hospital of Dalian Medical University Dalian, Liaoning China
                Author notes
                [*] [* ] Correspondence

                Shilin Xia and Dong Shang, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.

                Email: xiashilin@ 123456dmu.edu.cn ; shangdong@ 123456dmu.edu.cn

                Author information
                https://orcid.org/0000-0001-7516-7620
                https://orcid.org/0000-0002-2768-5244
                https://orcid.org/0000-0003-1187-3192
                Article
                CAM43946
                10.1002/cam4.3946
                8209604
                33982398
                023c1cd3-e287-4d3d-a0a7-bdee0319e920
                © 2021 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 April 2021
                : 19 April 2021
                Page count
                Figures: 10, Tables: 0, Pages: 13, Words: 5806
                Categories
                Original Research
                Cancer Biology
                Original Research
                Custom metadata
                2.0
                June 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.2 mode:remove_FC converted:17.06.2021

                Oncology & Radiotherapy
                biomarkers,immunotherapeutic targets,prognosis,stomach adenocarcinoma,weighted gene co‐expression network analysis

                Comments

                Comment on this article