29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transcriptional Control of Glutaredoxin GRXC9 Expression by a Salicylic Acid-Dependent and NPR1-Independent Pathway in Arabidopsis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress. GRXC9, coding for a CC-type glutaredoxin from Arabidopsis, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using GRXC9 as a model gene. We first established that GRXC9 expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition. GRXC9 promoter analyses indicate that SA controls gene transcription through two activating sequence- 1 ( as- 1)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the GRXC9 promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a knockout mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling GRXC9 expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of GRXC9 indicates that the GRXC9 protein negatively controls its own gene expression, forming part of the complex bound to the as- 1-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of GRXC9 in the context of the defense response to stress.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s11105-014-0782-5) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Isochorismate synthase is required to synthesize salicylic acid for plant defence.

          Salicylic acid (SA) mediates plant defences against pathogens, accumulating in both infected and distal leaves in response to pathogen attack. Pathogenesis-related gene expression and the synthesis of defensive compounds associated with both local and systemic acquired resistance (LAR and SAR) in plants require SA. In Arabidopsis, exogenous application of SA suffices to establish SAR, resulting in enhanced resistance to a variety of pathogens. However, despite its importance in plant defence against pathogens, SA biosynthesis is not well defined. Previous work has suggested that plants synthesize SA from phenylalanine; however, SA could still be produced when this pathway was inhibited, and the specific activity of radiolabelled SA in feeding experiments was often lower than expected. Some bacteria such as Pseudomonas aeruginosa synthesize SA using isochorismate synthase (ICS) and pyruvate lyase. Here we show, by cloning and characterizing an Arabidopsis defence-related gene (SID2) defined by mutation, that SA is synthesized from chorismate by means of ICS, and that SA made by this pathway is required for LAR and SAR responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systemic acquired resistance: turning local infection into global defense.

            Systemic acquired resistance (SAR) is an induced immune mechanism in plants. Unlike vertebrate adaptive immunity, SAR is broad spectrum, with no specificity to the initial infection. An avirulent pathogen causing local programmed cell death can induce SAR through generation of mobile signals, accumulation of the defense hormone salicylic acid, and secretion of the antimicrobial PR (pathogenesis-related) proteins. Consequently, the rest of the plant is protected from secondary infection for a period of weeks to months. SAR can even be passed on to progeny through epigenetic regulation. The Arabidopsis NPR1 (nonexpresser of PR genes 1) protein is a master regulator of SAR. Recent study has shown that salicylic acid directly binds to the NPR1 adaptor proteins NPR3 and NPR4, regulates their interactions with NPR1, and controls NPR1 protein stability. However, how NPR1 interacts with TGA transcription factors to activate defense gene expression is still not well understood. In addition, redox regulators, the mediator complex, WRKY transcription factors, endoplasmic reticulum-resident proteins, and DNA repair proteins play critical roles in SAR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants.

              Chromatin immunoprecipitation (ChIP) is a powerful tool for the characterization of covalent histone modifications and DNA-histone interactions in vivo. The procedure includes DNA-histone cross-linking in chromatin, shearing DNA into smaller fragments, immunoprecipitation with antibodies against the histone modifications of interest, followed by PCR identification of associated DNA sequences. In this protocol, we describe a simplified and optimized version of ChIP assay by reducing the number of experimental steps and isolation solutions and shortening preparation times. We include a nuclear isolation step before chromatin shearing, which provides a good yield of high-quality DNA resulting in at least 15 mug of DNA from each immunoprecipitated sample (from 0.2 to 0.4 g of starting tissue material) sufficient to test > or =25 genes of interest. This simpler and cost-efficient protocol has been applied for histone-modification studies of various Arabidopsis thaliana tissues and is easy to adapt for other systems as well.
                Bookmark

                Author and article information

                Contributors
                (56-2) 23542663 , lholuigue@bio.puc.cl
                Journal
                Plant Mol Biol Report
                Plant Mol. Biol. Rep
                Plant Molecular Biology Reporter / Ispmb
                Springer US (New York )
                0735-9640
                1556-469X
                14 August 2014
                14 August 2014
                2015
                : 33
                : 624-637
                Affiliations
                [ ]Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
                [ ]Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
                Article
                782
                10.1007/s11105-014-0782-5
                4677692
                26696694
                0254c036-7f31-41de-b220-ba45988de606
                © The Author(s) 2014

                Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                Categories
                Original Paper
                Custom metadata
                © Springer Science+Business Media New York 2015

                as-1-like element,glutaredoxin grxc9 (grx480),npr1-independent,salicylic acid,tga transcription factors

                Comments

                Comment on this article