39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atrial natriuretic peptide protects against bleomycin-induced pulmonary fibrosis via vascular endothelial cells in mice : ANP for pulmonary fibrosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Pulmonary fibrosis is a life-threatening disease characterized by progressive dyspnea and worsening pulmonary function. Atrial natriuretic peptide (ANP), a heart-derived secretory peptide used clinically in Japan for the treatment of acute heart failure, exerts a wide range of protective effects on various organs, including the heart, blood vessels, kidneys, and lungs. Its therapeutic properties are characterized by anti-inflammatory and anti-fibrotic activities mediated by the guanylyl cyclase-A (GC-A) receptor. We hypothesized that ANP would have anti-fibrotic and anti-inflammatory effects on bleomycin (BLM)-induced pulmonary fibrosis in mice.

          Methods

          Mice were divided into three groups: normal control, BLM with vehicle, and BLM with ANP. ANP (0.5 μg/kg/min via osmotic-pump, subcutaneously) or vehicle administration was started before BLM administration (1 mg/kg) and continued until the mice were sacrificed. At 7 or 21 days after BLM administration, fibrotic changes and infiltration of inflammatory cells in the lungs were assessed based on histological findings and analysis of bronchoalveolar lavage fluid. In addition, fibrosis and inflammation induced by BLM were evaluated in vascular endothelium-specific GC-A overexpressed mice. Finally, attenuation of transforming growth factor-β (TGF-β) signaling by ANP was studied using immortalized mouse endothelial cells stably expressing GC-A receptor.

          Results

          ANP significantly decreased lung fibrotic area and infiltration of inflammatory cells in lungs after BLM administration. Furthermore, similar effects of ANP were observed in vascular endothelium–specific GC-A overexpressed mice. In cultured mouse endothelial cells, ANP reduced phosphorylation of Smad2 after TGF-β stimulation.

          Conclusions

          ANP exerts protective effects on BLM-induced pulmonary fibrosis via vascular endothelial cells.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          TGF-β signaling in fibrosis.

          Transforming growth factor β (TGF-β) is a central mediator of fibrogenesis. TGF-β is upregulated and activated in fibrotic diseases and modulates fibroblast phenotype and function, inducing myofibroblast transdifferentiation while promoting matrix preservation. Studies in a wide range of experimental models have demonstrated the involvement of the canonical activin receptor-like kinase 5/Smad3 pathway in fibrosis. Smad-independent pathways may regulate Smad activation and, under certain conditions, may directly transduce fibrogenic signals. The profibrotic actions of TGF-β are mediated, at least in part, through induction of its downstream effector, connective tissue growth factor. In light of its essential role in the pathogenesis of fibrosis, TGF-β has emerged as an attractive therapeutic target. However, the pleiotropic and multifunctional effects of TGF-β and its role in tissue homeostasis, immunity and cell proliferation raise concerns regarding potential side effects that may be caused by TGF-β blockade. This minireview summarizes the role of TGF-β signaling pathways in the fibrotic response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Idiopathic pulmonary fibrosis.

            Idiopathic pulmonary fibrosis is a rapidly progressive illness of unknown cause characterized by sequential acute lung injury with subsequent scarring and end-stage lung disease. Treatment at present remains largely supportive, with evidence that patients' satisfaction and survival may be improved by referral to centers specializing in the evaluation of interstitial lung diseases. Although no drug therapy has clearly been demonstrated to benefit patients with idiopathic pulmonary fibrosis, a number of novel investigational agents hold promise for future study. Given the poor prognosis associated with idiopathic pulmonary fibrosis, patients should be referred to regional centers of expertise for enrollment in therapeutic clinical trials or for lung transplantation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis.

              Pirfenidone, a broad-spectrum antifibrotic agent, is known to have efficacy in certain fibrotic disease models, and is under clinical trials in patients with idiopathic pulmonary fibrosis. We investigated the antifibrotic effect of pirfenidone, and its regulatory effect on various pulmonary cytokines, in bleomycin-induced lung fibrosis in mice at the protein level, using prednisolone as a reference agent. Pirfenidone attenuated the bleomycin-induced pulmonary fibrosis at a minimum effective dose of 30 mg/kg/day t.i.d. from the analysis of lung hydroxyproline content. Both pirfenidone (30, 100 mg/kg/day t.i.d) and prednisolone (3, 15 mg/kg/day q.d.) suppressed lung inflammatory edema; however, prednisolone failed to suppress pulmonary fibrosis, which was significantly suppressed only by pirfenidone. Both pirfenidone and prednisolone suppressed the increase in lung interleukin (IL)-1beta, IL-6, IL-12p40 and monocyte chemoattractant protein (MCP)-1 levels induced by bleomycin. On the other hand, pirfenidone prevented the bleomycin-induced decrease in lung interferon (IFN)-gamma levels, while prednisolone had no such effect. Furthermore, pirfenidone suppressed elevation of lung basic-fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta1 levels, but prednisolone had no such effect. The increases in lung stroma cell derived factor (SDF)-1alpha and IL-18 were also suppressed. These findings suggest that pirfenidone exerts its antifibrotic effect through regulation of lung IFN-gamma, bFGF and TGF-beta1 levels during the development of bleomycin-induced pulmonary fibrosis in mice. The effect on SDF-1alpha and IL-18 levels may also be related to the antifibrotic effects of pirfenidone.
                Bookmark

                Author and article information

                Contributors
                +81-6-6833-5012 , nojiri@ri.ncvc.go.jp
                +81-6- 6645-3916 , kkonishi.0220@gmail.com
                Journal
                Respir Res
                Respir. Res
                Respiratory Research
                BioMed Central (London )
                1465-9921
                1465-993X
                3 January 2017
                3 January 2017
                2017
                : 18
                : 1
                Affiliations
                [1 ]Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-City, Osaka 565-8565 Japan
                [2 ]Department of Respiratory Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka-City, Osaka 545-8585 Japan
                [3 ]Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka Japan
                Article
                492
                10.1186/s12931-016-0492-7
                5210263
                28049526
                0258b164-cf25-493d-a37d-9da56dce5607
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 August 2016
                : 14 December 2016
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Respiratory medicine
                atrial natriuretic peptide,pulmonary fibrosis,bleomycin,vascular endothelial cell,transforming growth factor-β

                Comments

                Comment on this article