1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Yoda1 opens the lymphatic path for craniosynostosis therapy

      article-commentary
      1 , 2 , 1 , 3 ,
      The Journal of Clinical Investigation
      American Society for Clinical Investigation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rediscovery of meningeal lymphatic vessels (MLVs) has sparked research interest in their function in numerous neurological pathologies. Craniosynostosis (CS) is caused by a premature fusion of cranial sutures during development. In this issue of the JCI, Matrongolo and colleagues show that Twist1-haploinsufficient mice that develop CS exhibit raised intracranial pressure, diminished cerebrospinal fluid (CSF) outflow, and impaired paravascular CSF-brain flow; all features that were associated with MLV defects and exacerbated pathology in mouse models of Alzheimer’s disease. Activation of the mechanosensor Piezo1 with Yoda1 restored MLV function and CSF perfusion in CS models and in aged mice, opening an avenue for further development of therapeutics.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Structural and functional features of central nervous system lymphatics

          One of the characteristics of the CNS is the lack of a classical lymphatic drainage system. Although it is now accepted that the CNS undergoes constant immune surveillance that takes place within the meningeal compartment 1–3 , the mechanisms governing the entrance and exit of immune cells from the CNS remain poorly understood 4–6 . In searching for T cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the CSF, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the CNS. The discovery of the CNS lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and shed new light on the etiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules

            Aspelund et al. discover the presence of a lymphatic vessel network in the dura mater of the mouse brain and show that these dural lymphatic vessels are important for the clearance of macromolecules from the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional aspects of meningeal lymphatics in aging and Alzheimer’s disease

              Aging is a major risk factor for many neurological pathologies and the mechanisms underlying brain aging remain elusive. Unlike other tissues, the central nervous system (CNS) parenchyma is devoid of lymphatic vasculature and removal of waste products is performed mainly through a paravascular route. (Re)discovery and characterization of meningeal lymphatic vessels prompted for an assessment of their role in CNS waste clearance. Here we show that meningeal lymphatics are draining macromolecules from the CNS (CSF and ISF) into the cervical lymph nodes. Impairment of meningeal lymphatic function slows paravascular influx of CSF macromolecules and efflux of ISF macromolecules, and induces cognitive impairment. Treatment of aged mice with vascular endothelial growth factor C enhances meningeal lymphatic drainage of CSF macromolecules, improving brain perfusion and learning and memory performance. Disruption of meningeal lymphatic vessels in transgenic mouse models of Alzheimer’s disease (AD) promotes amyloid deposition in the meninges, which closely resembles human meningeal pathology, and aggravates parenchymal amyloid accumulation. Our findings suggest that meningeal lymphatic dysfunction may be an aggravating factor in AD pathology and in age-associated cognitive decline. Thus, augmentation of meningeal lymphatic function might be a promising therapeutic target for preventing or delaying age-associated neurological diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Clin Invest
                J Clin Invest
                J Clin Invest
                The Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                15 February 2024
                15 February 2024
                15 February 2024
                : 134
                : 4
                : e176858
                Affiliations
                [1 ]Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland.
                [2 ]Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland.
                [3 ]Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland.
                Author notes
                Address correspondence to: Kari Alitalo, Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki 1, PO Box 63 (Haartmaninkatu 8), FI-00014, University of Helsinki, Finland. Phone: 358.9.191.25511; Email: kari.alitalo@ 123456helsinki.fi .
                Author information
                http://orcid.org/0000-0002-7331-0902
                Article
                176858
                10.1172/JCI176858
                10866666
                38357924
                027ad6e2-1696-4f0f-af80-d7ca40afcabd
                © 2024 Aspelund, et al.

                This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                Categories
                Commentary

                Comments

                Comment on this article