125
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization

      research-article
      1 , 2 , * , 1 , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the fundamental goals in proteomics and cell biology is to identify the functions of proteins in various cellular organelles and pathways. Information of subcellular locations of proteins can provide useful insights for revealing their functions and understanding how they interact with each other in cellular network systems. Most of the existing methods in predicting plant protein subcellular localization can only cover three or four location sites, and none of them can be used to deal with multiplex plant proteins that can simultaneously exist at two, or move between, two or more different location sites. Actually, such multiplex proteins might have special biological functions worthy of particular notice. The present study was devoted to improve the existing plant protein subcellular location predictors from the aforementioned two aspects. A new predictor called “Plant-mPLoc” is developed by integrating the gene ontology information, functional domain information, and sequential evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify plant proteins among the following 12 location sites: (1) cell membrane, (2) cell wall, (3) chloroplast, (4) cytoplasm, (5) endoplasmic reticulum, (6) extracellular, (7) Golgi apparatus, (8) mitochondrion, (9) nucleus, (10) peroxisome, (11) plastid, and (12) vacuole. Compared with the existing methods for predicting plant protein subcellular localization, the new predictor is much more powerful and flexible. Particularly, it also has the capacity to deal with multiple-location proteins, which is beyond the reach of any existing predictors specialized for identifying plant protein subcellular localization. As a user-friendly web-server, Plant-mPLoc is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results. It is anticipated that the Plant-mPLoc predictor as presented in this paper will become a very useful tool in plant science as well as all the relevant areas.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pfam: clans, web tools and services

            Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (), the USA (), France () and Sweden ().
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences.

              Probably more than 25% of the proteins encoded by the nuclear genomes of multicellular eukaryotes are targeted to membrane-bound compartments by N-terminal targeting signals. The major signals are those for the endoplasmic reticulum, the mitochondria, and in plants, plastids. The most abundant of these targeted proteins are well-known and well-studied, but a large proportion remain unknown, including most of those involved in regulation of organellar gene expression or regulation of biochemical pathways. The discovery and characterization of these proteins by biochemical means will be long and difficult. An alternative method is to identify candidate organellar proteins via their characteristic N-terminal targeting sequences. We have developed a neural network-based approach (Predotar--Prediction of Organelle Targeting sequences) for identifying genes encoding these proteins amongst eukaryotic genome sequences. The power of this approach for identifying and annotating novel gene families has been illustrated by the discovery of the pentatricopeptide repeat family.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                28 June 2010
                30 July 2010
                : 5
                : 6
                : e11335
                Affiliations
                [1 ]Institute of Image Processing & Pattern Recognition, Shanghai Jiaotong University, Shanghai, China
                [2 ]Gordon Life Science Institute, San Diego, California, United States of America
                University of Melbourne, Australia
                Author notes

                Conceived and designed the experiments: KCC HBS. Performed the experiments: KCC HBS. Analyzed the data: KCC HBS. Wrote the paper: KCC.

                Article
                10-PONE-RA-18100R1
                10.1371/journal.pone.0011335
                2893129
                20596258
                02d01fb3-3b44-4824-b50b-12b9f853e74e
                Chou, Shen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 April 2010
                : 4 June 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Genetics and Genomics/Bioinformatics
                Genetics and Genomics/Plant Genomes and Evolution
                Plant Biology/Plant Cell Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article