21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dinosaurs, dragons, and dwarfs: The evolution of maximal body size

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among local faunas, the maximum body size and taxonomic affiliation of the top terrestrial vertebrate vary greatly. Does this variation reflect how food requirements differ between trophic levels (herbivores vs. carnivores) and with taxonomic affiliation (mammals and birds vs. reptiles)? We gathered data on the body size and food requirements of the top terrestrial herbivores and carnivores, over the past 65,000 years, from oceanic islands and continents. The body mass of the top species was found to increase with increasing land area, with a slope similar to that of the relation between body mass and home range area, suggesting that maximum body size is determined by the number of home ranges that can fit into a given land area. For a given land area, the body size of the top species decreased in the sequence: ectothermic herbivore > endothermic herbivore > ectothermic carnivore > endothermic carnivore. When we converted body mass to food requirements, the food consumption of a top herbivore was about 8 times that of a top carnivore, in accord with the factor expected from the trophic pyramid. Although top ectotherms were heavier than top endotherms at a given trophic level, lower metabolic rates per gram of body mass in ectotherms resulted in endotherms and ectotherms having the same food consumption. These patterns explain the size of the largest-ever extinct mammal, but the size of the largest dinosaurs exceeds that predicted from land areas and remains unexplained.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Article: not found

          Tree and forest functioning in an enriched CO2 atmosphere

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A 400 million year carbon isotope record of pedogenic carbonate; implications for paleoatomospheric carbon dioxide

            D. Ekart (1999)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ecology and macroecology of mammalian home range area.

              Although many studies employ allometric relationships to demonstrate possible dependence of various traits on body mass, the relationship between home range size and body mass has been perhaps the most difficult to understand. Early studies demonstrated that carnivorous species had larger home ranges than herbivorous species of similar mass. These studies also argued that scaling relations (e.g., slopes) of the former were steeper than those of the latter and explained this in terms of the distribution of food resources, which are more uniformly distributed for most herbivores than for carnivores. In contrast to these studies, we show that scaling relations of home ranges for carnivorous mammals do not differ significantly from those of herbivorous and omnivorous species and that all three exhibit slopes that are significantly steeper than predicted on the basis of energetic requirements. We also demonstrate that home range size is constrained to fit within a polygonal constraint space bounded by lines representing energetic and/or biophysical limitations, which suggests that the log-linear relationship between home range area and mass may not be the appropriate function to compare against the energetically predicted slopes of 0.75 or 1.0. It remains unclear, however, why the slope of the relationship between home range area and body mass, whether based on raw data or on constraint lines, always exceeds that predicted by the energetic needs hypothesis.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 04 2001
                November 27 2001
                December 04 2001
                : 98
                : 25
                : 14518-14523
                Article
                10.1073/pnas.251548698
                64714
                11724953
                02d60bca-9c07-4c94-9033-69af7f9988de
                © 2001
                History

                Comments

                Comment on this article