10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Respiratory Muscle Training on Pulmonary Function in Individuals with Spinal Cord Injury: An Updated Meta-analysis

      review-article
      1 , 2 , 3 ,
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To investigate the pulmonary function responses to respiratory muscle training (RMT) in individuals with tetraplegia and provide a systematic review of the included studies.

          Methods

          Computerized retrieval of randomized controlled trials (RCT) in PubMed, Embase, and the Cochrane Library on the improvement of respiratory function in patients with spinal cord injury by RMT was conducted until May 2019. Two researchers independently screened the literature, extracted the data, and evaluated the risk of bias in the included studies. Articles were scored for their methodological quality using the Cochrane Collaboration risk of bias assessment tool.

          Results

          Sixteen studies were identified. A significant benefit of RMT was revealed for five outcomes: force vital capacity (FVC, WMD: -0.43, 95% CI -0.84 to -0.03, P = 0.037), vital capacity (VC, WMD: -0.40, 95% CI -0.69 to -0.12, P = 0.037), vital capacity (VC, WMD: -0.40, 95% CI -0.69 to -0.12, P = 0.037), vital capacity (VC, WMD: -0.40, 95% CI -0.69 to -0.12, P = 0.037), vital capacity (VC, WMD: -0.40, 95% CI -0.69 to -0.12, P = 0.037), vital capacity (VC, WMD: -0.40, 95% CI -0.69 to -0.12,

          Conclusion

          Our findings demonstrate that RMT can effectively improve spinal cord injury pulmonary function of the patient, which is marked by increasing respiratory strength, function, and endurance. Limited by the quantity and quality of the included studies, the above conclusion needs to be verified by more high-quality studies.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Respiratory dysfunction and management in spinal cord injury.

          Respiratory dysfunction is a major cause of morbidity and mortality in spinal cord injury (SCI), which causes impairment of respiratory muscles, reduced vital capacity, ineffective cough, reduction in lung and chest wall compliance, and excess oxygen cost of breathing due to distortion of the respiratory system. Severely affected individuals may require assisted ventilation, which can cause problems with speech production. Appropriate candidates can sometimes be liberated from mechanical ventilation by phrenic-nerve pacing and pacing of the external intercostal muscles. Partial recovery of respiratory-muscle performance occurs spontaneously. The eventual vital capacity depends on the extent of spontaneous recovery, years since injury, smoking, a history of chest injury or surgery, and maximum inspiratory pressure. Also, respiratory-muscle training and abdominal binders improve performance of the respiratory muscles. For patients on long-term ventilation, speech production is difficult. Often, practitioners are reluctant to deflate the tracheostomy tube cuff to allow speech production. Yet cuff-deflation can be done safely. Standard ventilator settings produce poor speech quality. Recent studies demonstrated vast improvement with long inspiratory time and positive end-expiratory pressure. Abdominal binders improve speech quality in patients with phrenic-nerve pacers. Recent data show that the level and completeness of injury and older age at the time of injury may not be related directly to mortality in SCI, which suggests that the care of SCI has improved. The data indicate that independent predictors of all-cause mortality include diabetes mellitus, heart disease, cigarette smoking, and percent-of-predicted forced expiratory volume in the first second. An important clinical problem in SCI is weak cough, which causes retention of secretions during infections. Methods for secretion clearance include chest physical therapy, spontaneous cough, suctioning, cough assistance by forced compression of the abdomen ("quad cough"), and mechanical insufflation-exsufflation. Recently described but not yet available for general use is activation of the abdominal muscles via an epidural electrode placed at spinal cord level T9-L1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pulmonary function and spinal cord injury.

            Injury to the cervical and upper thoracic spinal cord disrupts function of inspiratory and expiratory muscles, as reflected by reduction in spirometric and lung volume parameters and static mouth pressures. In association, subjects with tetraplegia have decreased chest wall and lung compliance, increased abdominal wall compliance, and rib cage stiffness with paradoxical chest wall movements, all of which contribute to an increase in the work of breathing. Expiratory muscle function is more compromised than inspiratory muscle function among subjects with tetraplegia and high paraplegia, which can result in ineffective cough and propensity to mucus retention and atelectasis. Subjects with tetraplegia also demonstrate heightened vagal activity with reduction in baseline airway caliber, findings attributed to loss of sympathetic innervation to the lungs. Significant increase in airway caliber following inhalation of ipratropium bromide, an anticholinergic agent, suggests that reduction in airway caliber is not due to acquired airway fibrosis stemming from repeated infections or to abnormal hysteresis secondary to chronic inability of subjects to inhale to predicted total lung capacity. Reduced baseline airway caliber possibly explains why subjects with tetraplegia exhibit airway hyperresponsiveness to methacholine and ultrasonically nebulized distilled water. While it has been well demonstrated that bilateral phrenic nerve pacing or stimulation through intramuscular diaphragmatic electrodes improves inspiratory muscle function, it remains unclear if inspiratory muscle training improves pulmonary function. Recent findings suggest that expiratory muscle training, electrical stimulation of expiratory muscles and administration of a long-acting beta(2)-agonist (salmeterol) improve physiological parameters and cough. It is unknown if baseline bronchoconstriction in tetraplegia contributes to respiratory symptoms, of if the chronic administration of a bronchodilator reduces the work of breathing and/or improves respiratory symptoms. Less is known regarding the benefits of treatment of obstructive sleep apnea, despite evidence indicating that the prevalence of this condition in persons with tetraplegia is far greater than that encountered in able-bodied individuals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Respiratory muscle training for cervical spinal cord injury.

              Cervical spinal cord injury (SCI) severely comprises respiratory function due to paralysis and impairment of the respiratory muscles. Various types of respiratory muscle training (RMT) to improve respiratory function for people with cervical SCI have been described in the literature. A systematic review of this literature is needed to determine the effectiveness of RMT (either inspiratory or expiratory muscle training) on pulmonary function, dyspnoea, respiratory complications, respiratory muscle strength, and quality of life for people with cervical SCI.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2020
                22 February 2020
                : 2020
                : 7530498
                Affiliations
                1Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000 Zhejiang, China
                2School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou, 221018 Jiangsu, China
                3Department of Pharmaceutics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000 Zhejiang, China
                Author notes

                Academic Editor: Ashraf S. Gorgey

                Author information
                https://orcid.org/0000-0003-0340-4425
                Article
                10.1155/2020/7530498
                7060446
                32185217
                02ebb50b-c6d9-4f09-bd68-5dc08af33c1f
                Copyright © 2020 Xiaojun Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 September 2019
                : 14 January 2020
                Funding
                Funded by: Key Science and Technology Program of Jilin Province
                Award ID: 20170204054SF
                Categories
                Review Article

                Comments

                Comment on this article