58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transgenerational gene silencing causes gain of virulence in a plant pathogen

      research-article
      1 , 1 , a , 1
      Nature Communications
      Nature Pub. Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Avirulence ( Avr) genes of plant pathogens encode effector proteins that trigger immunity in plants carrying appropriate resistance ( R) genes. The Phytophthora sojae Avr3a gene displays allelic variation in messenger RNA transcript levels. P. sojae strains with detectable Avr3a gene transcripts are avirulent on plants carrying the R-gene Rps3a, whereas strains lacking Avr3a mRNA escape detection by Rps3a and are virulent. Here we show non-Mendelian interactions between naturally occurring Avr3a alleles that result in transgenerational gene silencing, and we identify small RNA molecules of 25 nucleotides that are abundant in gene-silenced strains but not in strains with Avr3a mRNA. This example of transgenerational gene silencing is exceptional because it is naturally occurring and results in gain of virulence in a pathogenic organism.

          Abstract

          Plant pathogens encode effector proteins that trigger immunity in plants carrying appropriate resistance genes. Here Qutob et al. show non-Mendelian interactions between naturally occurring Phytophthora sojae alleles that result in transgenerational gene silencing and gain of virulence in soybean plants.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Biological and biomedical implications of the co-evolution of pathogens and their hosts.

          Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host-pathogen interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome evolution following host jumps in the Irish potato famine pathogen lineage.

            Many plant pathogens, including those in the lineage of the Irish potato famine organism Phytophthora infestans, evolve by host jumps followed by specialization. However, how host jumps affect genome evolution remains largely unknown. To determine the patterns of sequence variation in the P. infestans lineage, we resequenced six genomes of four sister species. This revealed uneven evolutionary rates across genomes with genes in repeat-rich regions showing higher rates of structural polymorphisms and positive selection. These loci are enriched in genes induced in planta, implicating host adaptation in genome evolution. Unexpectedly, genes involved in epigenetic processes formed another class of rapidly evolving residents of the gene-sparse regions. These results demonstrate that dynamic repeat-rich genome compartments underpin accelerated gene evolution following host jumps in this pathogen lineage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Copy Number Variation and Transcriptional Polymorphisms of Phytophthora sojae RXLR Effector Genes Avr1a and Avr3a

              The importance of segmental duplications and copy number variants as a source of genetic and phenotypic variation is gaining greater appreciation, in a variety of organisms. Now, we have identified the Phytophthora sojae avirulence genes Avr1a and Avr3a and demonstrate how each of these Avr genes display copy number variation in different strains of P. sojae. The Avr1a locus is a tandem array of four near-identical copies of a 5.2 kb DNA segment. Two copies encoding Avr1a are deleted in some P. sojae strains, causing changes in virulence. In other P. sojae strains, differences in transcription of Avr1a result in gain of virulence. For Avr3a, there are four copies or one copy of this gene, depending on the P. sojae strain. In P. sojae strains with multiple copies of Avr3a, this gene occurs within a 10.8 kb segmental duplication that includes four other genes. Transcriptional differences of the Avr3a gene among P. sojae strains cause changes in virulence. To determine the extent of duplication within the superfamily of secreted proteins that includes Avr1a and Avr3a, predicted RXLR effector genes from the P. sojae and the P. ramorum genomes were compared by counting trace file matches from whole genome shotgun sequences. The results indicate that multiple, near-identical copies of RXLR effector genes are prevalent in oomycete genomes. We propose that multiple copies of particular RXLR effectors may contribute to pathogen fitness. However, recognition of these effectors by plant immune systems results in selection for pathogen strains with deleted or transcriptionally silenced gene copies.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                15 January 2013
                : 4
                : 1349
                Affiliations
                [1 ]Agriculture and Agri-Food Canada , 1391 Sandford Street, London, Ontario N5V 4T3, Canada
                Author notes
                Article
                ncomms2354
                10.1038/ncomms2354
                3562452
                23322037
                02f0c72f-7cb0-4447-8ff2-96dedc3684cc
                Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 27 September 2012
                : 03 December 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article