4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polaritonics: from microcavities to sub-wavelength confinement

      1 , 2
      Nanophotonics
      Walter de Gruyter GmbH

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Following the initial success of cavity quantum electrodynamics in atomic systems, strong coupling between light and matter excitations is now achieved in several solid-state set-ups. In those systems, the possibility to engineer quantum emitters and resonators with very different characteristics has allowed access to novel nonlinear and non-perturbative phenomena of both fundamental and applied interest. In this article, we will review some advances in the field of solid-state cavity quantum electrodynamics, focussing on the scaling of the relevant figures of merit in the transition from microcavities to sub-wavelength confinement.

          Most cited references177

          • Record: found
          • Abstract: found
          • Article: not found

          Single-molecule strong coupling at room temperature in plasmonic nanocavities

          Emitters placed in an optical cavity experience an environment that changes their coupling to light. In the weak-coupling regime light extraction is enhanced, but more profound effects emerge in the single-molecule strong-coupling regime where mixed light-matter states form1,2. Individual two-level emitters in such cavities become non-linear for single photons, forming key building blocks for quantum information systems as well as ultra-low power switches and lasers3–6. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complex fabrication, severely compromising their use5,7,8. Here, by scaling the cavity volume below 40 nm3 and using host-guest chemistry to align 1-10 protectively-isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from >50 plasmonic nanocavities display characteristic anticrossings, with Rabi frequencies of 300 meV for 10 molecules decreasing to 90 meV for single molecules, matching quantitative models. Statistical analysis of vibrational spectroscopy time-series and dark-field scattering spectra provide evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis9 and pathways towards manipulation of chemical bonds10.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Quantum fluids of light

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strong coupling between surface plasmon polaritons and emitters: a review

              In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science.
                Bookmark

                Author and article information

                Journal
                Nanophotonics
                Walter de Gruyter GmbH
                2192-8614
                February 12 2019
                February 12 2019
                : 8
                : 4
                : 641-654
                Affiliations
                [1 ]CNR NANOTEC-Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
                [2 ]School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
                Article
                10.1515/nanoph-2018-0188
                031388f3-53fa-43d4-b118-b0e69adabee0
                © 2019

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article