38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pressure overload-induced mild cardiac hypertrophy reduces left ventricular transmural differences in mitochondrial respiratory chain activity and increases oxidative stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Increased mechanical stress and contractility characterizes normal left ventricular (LV) subendocardium (Endo) but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi) and whether pressure overload-induced LV hypertrophy (LVH) might modulate transmural gradients through increased reactive oxygen species (ROS) production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats ( n = 10 for each group). Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilized fibers, Amplex Red fluorescence and citrate synthase activity. Results: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (−36.7%, P < 0.01) and complex IV activity (−57.4%, P < 0.05). Mitochondrial hydrogen peroxide (H 2O 2) production was similar in both LV layers. Aortic banding induced mild LVH (+31.7% LV mass), associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (−23.6 and −33.3%), increased mitochondrial H 2O 2 production (+86.9 and +73.1%), free radical leak (+27.2% and +36.3%) and citrate synthase activity (+27.2% and +36.3%) in Endo and Epi, respectively. Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (−57.4 vs. −12.2%; P = 0.02). Conclusions: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Role of oxidative stress in cardiac hypertrophy and remodeling.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of coronary blood flow during exercise.

            Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already 70-80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains capillary density at a level commensurate with the degree of exercise-induced physiological myocardial hypertrophy. Nevertheless, training alters the distribution of coronary vascular resistance so that more capillaries are recruited, resulting in an increase in the permeability-surface area product without a change in capillary numerical density. Maintenance of alpha- and ss-adrenergic tone in the presence of lower circulating catecholamine levels appears to be due to increased receptor responsiveness to adrenergic stimulation. Exercise training also alters local control of coronary resistance vessels. Thus arterioles exhibit increased myogenic tone, likely due to a calcium-dependent protein kinase C signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, training augments endothelium-dependent vasodilation throughout the coronary microcirculation. This enhanced responsiveness appears to result principally from an increased expression of nitric oxide (NO) synthase. Finally, physical conditioning decreases extravascular compressive forces at rest and at comparable levels of exercise, mainly because of a decrease in heart rate. Impedance to coronary inflow due to an epicardial coronary artery stenosis results in marked redistribution of myocardial blood flow during exercise away from the subendocardium towards the subepicardium. However, in contrast to the traditional view that myocardial ischemia causes maximal microvascular dilation, more recent studies have shown that the coronary microvessels retain some degree of vasodilator reserve during exercise-induced ischemia and remain responsive to vasoconstrictor stimuli. These observations have required reassessment of the principal sites of resistance to blood flow in the microcirculation. A significant fraction of resistance is located in small arteries that are outside the metabolic control of the myocardium but are sensitive to shear and nitrovasodilators. The coronary collateral system embodies a dynamic network of interarterial vessels that can undergo both long- and short-term adjustments that can modulate blood flow to the dependent myocardium. Long-term adjustments including recruitment and growth of collateral vessels in response to arterial occlusion are time dependent and determine the maximum blood flow rates available to the collateral-dependent vascular bed during exercise. Rapid short-term adjustments result from active vasomotor activity of the collateral vessels. Mature coronary collateral vessels are responsive to vasodilators such as nitroglycerin and atrial natriuretic peptide, and to vasoconstrictors such as vasopressin, angiotensin II, and the platelet products serotonin and thromboxane A(2). During exercise, ss-adrenergic activity and endothelium-derived NO and prostanoids exert vasodilator influences on coronary collateral vessels. Importantly, alterations in collateral vasomotor tone, e.g., by exogenous vasopressin, inhibition of endogenous NO or prostanoid production, or increasing local adenosine production can modify collateral conductance, thereby influencing the blood supply to the dependent myocardium. In addition, vasomotor activity in the resistance vessels of the collateral perfused vascular bed can influence the volume and distribution of blood flow within the collateral zone. Finally, there is evidence that vasomotor control of resistance vessels in the normally perfused regions of collateralized hearts is altered, indicating that the vascular adaptations in hearts with a flow-limiting coronary obstruction occur at a global as well as a regional level. Exercise training does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. In addition to ischemia, the pressure gradient between vascular beds, which is a determinant of the flow rate and therefore the shear stress on the collateral vessel endothelium, may also be important in stimulating growth of collateral vessels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Controversies in ventricular remodelling.

              Ventricular remodelling describes structural changes in the left ventricle in response to chronic alterations in loading conditions, with three major patterns: concentric remodelling, when a pressure load leads to growth in cardiomyocyte thickness; eccentric hypertrophy, when a volume load produces myocyte lengthening; and myocardial infarction, an amalgam of patterns in which stretched and dilated infarcted tissue increases left-ventricular volume with a combined volume and pressure load on non-infarcted areas. Whether left-ventricular hypertrophy is adaptive or maladaptive is controversial, as suggested by patterns of signalling pathways, transgenic models, and clinical findings in aortic stenosis. The transition from apparently compensated hypertrophy to the failing heart indicates a changing balance between metalloproteinases and their inhibitors, effects of reactive oxygen species, and death-promoting and profibrotic neurohumoral responses. These processes are evasive therapeutic targets. Here, we discuss potential novel therapies for these disorders, including: sildenafil, an unexpected option for anti-transition therapy; surgery for increased sphericity caused by chronic volume overload of mitral regurgitation; an antifibrotic peptide to inhibit the fibrogenic effects of transforming growth factor beta; mechanical intervention in advanced heart failure; and stem-cell therapy.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physio.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                28 August 2012
                2012
                : 3
                : 332
                Affiliations
                [1] 1simpleService de Chirurgie Cardiovasculaire, Pôle d'activité médico-chirurgicale Cardiovasculaire, Hôpitaux Universitaires, CHRU Strasbourg Strasbourg, France
                [2] 2simpleEquipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg Strasbourg, France
                [3] 3simpleService de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Hôpitaux Universitaires, CHRU Strasbourg Strasbourg, France
                [4] 4simpleLaboratoire de Neurobiologie et de Pharmacologie, Université de Strasbourg Strasbourg, France
                [5] 5simpleFaculté des Sciences du Sport, Université de Strasbourg Strasbourg, France
                Author notes

                Edited by: Kenneth S. Campbell, University of Kentucky, USA

                Reviewed by: Ravi C. Balijepalli, University of Wisconsin, USA; Leonardo F. Ferreira, University of Florida, USA

                *Correspondence: Bernard Geny, Service de Physiologie et d'Explorations, Fonctionnelles et Equipe d'Accueil 3072, Université et Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France. e-mail: bernard.geny@ 123456chru-strasbourg.fr

                This article was submitted to Frontiers in Cardiac Muscle Physiology, a specialty of Frontiers in Physiology.

                Article
                10.3389/fphys.2012.00332
                3428974
                22934079
                0332aa89-fc3a-4852-b1b2-885357ddc32d
                Copyright © 2012 Kindo, Gerelli, Bouitbir, Charles, Zoll, Hoang Minh, Monassier, Favret, Piquard and Geny.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 23 April 2012
                : 29 July 2012
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 52, Pages: 14, Words: 8736
                Categories
                Physiology
                Original Research Article

                Anatomy & Physiology
                pressure overload,oxydative stress,hypertrophy,heart,mitochondria,transmural,aortic banding

                Comments

                Comment on this article