Search for authorsSearch for similar articles
20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concerted In Vitro Trimming of Viral HLA-B27-Restricted Ligands by Human ERAP1 and ERAP2 Aminopeptidases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the classical human leukocyte antigen (HLA) class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases) and transported to the endoplasmic reticulum (ER) lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          SYFPEITHI: database for MHC ligands and peptide motifs.

          The first version of the major histocompatibility complex (MHC) databank SYFPEITHI: database for MHC ligands and peptide motifs, is now available to the general public. It contains a collection of MHC class I and class II ligands and peptide motifs of humans and other species, such as apes, cattle, chicken, and mouse, for example, and is continuously updated. All motifs currently available are accessible as individual entries. Searches for MHC alleles, MHC motifs, natural ligands, T-cell epitopes, source proteins/organisms and references are possible. Hyperlinks to the EMBL and PubMed databases are included. In addition, ligand predictions are available for a number of MHC allelic products. The database content is restricted to published data only.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum.

            The generation of many HLA class I peptides entails a final trimming step in the endoplasmic reticulum that, in humans, is accomplished by two 'candidate' aminopeptidases. We show here that one of these, ERAP1, was unable to remove several N-terminal amino acids that were trimmed efficiently by the second enzyme, ERAP2. This trimming of a longer peptide required the concerted action of both ERAP1 and ERAP2, both for in vitro digestion and in vivo for cellular antigen presentation. ERAP1 and ERAP2 localized together in vivo and associated physically in complexes that were most likely heterodimeric. Thus, the human endoplasmic reticulum is equipped with a pair of trimming aminopeptidases that have complementary functions in HLA class I peptide presentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues.

              Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) appears to be specialized to produce peptides presented on class I major histocompatibility complex molecules. We found that purified ERAP1 trimmed peptides that were ten residues or longer, but spared eight-residue peptides. In vivo, ERAP1 enhanced production of an eight-residue ovalbumin epitope from precursors extended on the NH2 terminus that were generated either in the ER or cytosol. Purified ERAP1 also trimmed nearly half the nine-residue peptides tested. By destroying such nine-residue peptides in normal human cells, ERAP1 reduced the overall supply of antigenic peptides. However, after interferon-gamma treatment, which causes proteasomes to produce more NH2-extended antigenic precursors, ERAP1 increased the supply of peptides for MHC class I antigen presentation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                1 November 2013
                : 8
                : 11
                : e79596
                Affiliations
                [1]Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
                Massachusetts General Hospital, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DL. Performed the experiments: EL AB CJ CM. Analyzed the data: EL DL. Contributed reagents/materials/analysis tools: MJ. Wrote the manuscript: DL.

                Article
                PONE-D-13-14999
                10.1371/journal.pone.0079596
                3815102
                033775fa-4183-445e-9395-0b452bf171eb
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 April 2013
                : 24 September 2013
                Funding
                This work was supported by grants to D. L. from the Ministerio de Ciencia e Innovación. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article