3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimising sample preparation for FTIR-based microplastic analysis in wastewater and sludge samples: multiple digestions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The lack of standardised methodologies in microplastic research has been addressed in recent years as it hampers the comparison of results across studies. The quantification of microplastics in the environment is key to the assessment of the potential eco-toxicological impacts that this new category of emerging pollutants could have on terrestrial and aquatic species. Therefore, the need for protocols that are robust, simple and reliable together with their standardisation are of crucial importance. This study has focused on removal of organic matter with Fenton reagent from wastewater and sludge samples. This step of analysis was optimised by implementing a multi-digestion treatment on these samples that have high concentration of complex mixtures of organic matter, which interfere with microplastic enumeration. Moreover, this study targeted the detection of microplastics in the sub-hundred-micron size range due to the potential higher risks associated with smaller-sized particles and the limited data available from previous wastewater research. To show the validity of the method, triplicate samples of raw sewage, final effluent and sludge were independently spiked with two different sizes and types of microplastic polymers. Due to the various analytical stages required for the isolation of microplastics, time is a limiting factor in sample processing. The sequential digestion with Fenton reagent represents an inexpensive and time-efficient procedure for wastewater research providing effective degradation of organic material. These advantages over other currently available methods mean the method is suitable for analysis of large numbers of samples allowing robust monitoring data sets to be generated.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s00216-021-03331-6.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Production, use, and fate of all plastics ever made

          We present the first ever global account of the production, use, and end-of-life fate of all plastics ever made by humankind.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marine pollution. Plastic waste inputs from land into the ocean.

            Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microplastics in the marine environment: a review of the methods used for identification and quantification.

              This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment. Three main sampling strategies were identified: selective, volume-reduced, and bulk sampling. Most sediment samples came from sandy beaches at the high tide line, and most seawater samples were taken at the sea surface using neuston nets. Four steps were distinguished during sample processing: density separation, filtration, sieving, and visual sorting of microplastics. Visual sorting was one of the most commonly used methods for the identification of microplastics (using type, shape, degradation stage, and color as criteria). Chemical and physical characteristics (e.g., specific density) were also used. The most reliable method to identify the chemical composition of microplastics is by infrared spectroscopy. Most studies reported that plastic fragments were polyethylene and polypropylene polymers. Units commonly used for abundance estimates are "items per m(2)" for sediment and sea surface studies and "items per m(3)" for water column studies. Mesh size of sieves and filters used during sampling or sample processing influence abundance estimates. Most studies reported two main size ranges of microplastics: (i) 500 μm-5 mm, which are retained by a 500 μm sieve/net, and (ii) 1-500 μm, or fractions thereof that are retained on filters. We recommend that future programs of monitoring continue to distinguish these size fractions, but we suggest standardized sampling procedures which allow the spatiotemporal comparison of microplastic abundance across marine environments.
                Bookmark

                Author and article information

                Contributors
                serena.cunsolo@port.ac.uk
                Journal
                Anal Bioanal Chem
                Anal Bioanal Chem
                Analytical and Bioanalytical Chemistry
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1618-2642
                1618-2650
                23 April 2021
                23 April 2021
                2021
                : 413
                : 14
                : 3789-3799
                Affiliations
                [1 ]GRID grid.4701.2, ISNI 0000 0001 0728 6636, School of Civil Engineering and Surveying, Faculty of Technology, , University of Portsmouth, ; Portsmouth, PO1 3AH UK
                [2 ]GRID grid.4701.2, ISNI 0000 0001 0728 6636, School of the Environment Geography and Geosciences, Faculty of Science and Health, , University of Portsmouth, ; Portsmouth, PO1 3QL UK
                [3 ]GRID grid.494924.6, UK Centre for Ecology and Hydrology, ; Wallingford, OX10 8BB UK
                Author information
                http://orcid.org/0000-0002-0161-2661
                Article
                3331
                10.1007/s00216-021-03331-6
                8141486
                33890119
                03803e65-c096-4ff3-b399-f0b7fbfc9154
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 December 2020
                : 1 April 2021
                : 7 April 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100009153, University of Portsmouth;
                Categories
                Research Paper
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2021

                Analytical chemistry
                wet peroxide oxidation,organic matter,microplastics,wastewater,recovery,extraction

                Comments

                Comment on this article