36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct Regulation of BK Channels by Phosphatidylinositol 4,5-Bisphosphate as a Novel Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large conductance, calcium- and voltage-gated potassium (BK) channels are ubiquitous and critical for neuronal function, immunity, and smooth muscle contractility. BK channels are thought to be regulated by phosphatidylinositol 4,5-bisphosphate (PIP 2) only through phospholipase C (PLC)–generated PIP 2 metabolites that target Ca 2+ stores and protein kinase C and, eventually, the BK channel. Here, we report that PIP 2 activates BK channels independently of PIP 2 metabolites. PIP 2 enhances Ca 2+-driven gating and alters both open and closed channel distributions without affecting voltage gating and unitary conductance. Recovery from activation was strongly dependent on PIP 2 acyl chain length, with channels exposed to water-soluble diC4 and diC8 showing much faster recovery than those exposed to PIP 2 (diC16). The PIP 2–channel interaction requires negative charge and the inositol moiety in the phospholipid headgroup, and the sequence RKK in the S6–S7 cytosolic linker of the BK channel-forming (cbv1) subunit. PIP 2-induced activation is drastically potentiated by accessory β 1 (but not β 4) channel subunits. Moreover, PIP 2 robustly activates BK channels in vascular myocytes, where β 1 subunits are abundantly expressed, but not in skeletal myocytes, where these subunits are barely detectable. These data demonstrate that the final PIP 2 effect is determined by channel accessory subunits, and such mechanism is subunit specific. In HEK293 cells, cotransfection of cbv1+β 1 and PI4-kinaseIIα robustly activates BK channels, suggesting a role for endogenous PIP 2 in modulating channel activity. Indeed, in membrane patches excised from vascular myocytes, BK channel activity runs down and Mg-ATP recovers it, this recovery being abolished by PIP 2 antibodies applied to the cytosolic membrane surface. Moreover, in intact arterial myocytes under physiological conditions, PLC inhibition on top of blockade of downstream signaling leads to drastic BK channel activation. Finally, pharmacological treatment that raises PIP 2 levels and activates BK channels dilates de-endothelized arteries that regulate cerebral blood flow. These data indicate that endogenous PIP 2 directly activates vascular myocyte BK channels to control vascular tone.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels.

            To resolve the controversy about messengers regulating KCNQ ion channels during phospholipase C-mediated suppression of current, we designed translocatable enzymes that quickly alter the phosphoinositide composition of the plasma membrane after application of a chemical cue. The KCNQ current falls rapidly to zero when phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PI(4,5)P2] is depleted without changing Ca2+, diacylglycerol, or inositol 1,4,5-trisphosphate. Current rises by 30% when PI(4,5)P2 is overproduced and does not change when phosphatidylinositol 3,4,5-trisphosphate is raised. Hence, the depletion of PI(4,5)P2 suffices to suppress current fully, and other second messengers are not needed. Our approach is ideally suited to study biological signaling networks involving membrane phosphoinositides.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses.

              Phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) is rapidly produced upon exposure of neutrophils to the chemoattractant N-formylmethionyl-leucylphenylalanine (fMLP), and has been proposed to act as a second messenger mediating actin polymerization and respiratory-burst activity. Here we present evidence that wortmannin, a known inhibitor of respiratory-burst activity, acts on PtdIns 3-kinase, the enzyme producing PtdInsP3 from PtdIns(4,5)P2. Pretreatment of 32P-labelled human neutrophils with 100 nM wortmannin totally abolished fMLP-mediated PtdInsP3 production, raised PtdInsP2 levels, and did not affect cellular PtdInsP and PtdIns contents. The inhibitory effect on PtdInsP3 formation in intact cells was dose-dependent, with an IC50 of approximately 5 nM. Similar results were obtained with PtdIns 3-kinase immunoprecipitated by antibodies against the p85 regulatory subunit: wortmannin totally inhibited PtdIns3P production in immunoprecipitates at concentrations of 10-100 nM (IC50 approximately 1 nM). These results illustrate the direct and specific inhibition of PtdIns 3-kinase by wortmannin. Since agonist-mediated respiratory-burst activation is most sensitive to wortmannin (IC50 = 12 nM), this suggests that agonist-mediated PtdInsP3 formation is indispensable for this cell response. Neutrophils pretreated with wortmannin develop oscillatory changes in F-actin content, but actin polymerization in response to fMLP is not inhibited. This, and the absence of PtdInsP3 under these conditions, are in agreement with a modulatory role for PtdInsP3 in cytoskeletal rearrangements, but imply that PtdInsP3 production is not a primary event triggering elongation of actin filaments in neutrophils.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                jgp
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                July 2008
                : 132
                : 1
                : 13-28
                Affiliations
                [1 ]Department of Pharmacology and [2 ]Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163
                Author notes

                Correspondence to Alex Dopico: adopico@ 123456utmem.edu

                Article
                200709913
                10.1085/jgp.200709913
                2442183
                18562499
                038730b0-36c8-4153-9f70-a714759ab78b
                © 2008 Vaithianathan et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jgp.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 23 October 2007
                : 29 May 2008
                Categories
                Articles
                Article

                Anatomy & Physiology
                Anatomy & Physiology

                Comments

                Comment on this article