9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronavirus disease 2019 (COVID-19) pandemic has become challenging even for the most durable healthcare systems. It seems that vaccination, one of the most effective public-health interventions, presents a ray of hope to end the pandemic by achieving herd immunity. In this review, we aimed to cover aspects of the current knowledge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and vaccine candidates in the light of autoimmune inflammatory diseases (AIIDs) and to analyze their potential in terms of safety and effectiveness in patients with AIIDs. Therefore, a focused narrative review was carried out to predict the possible implications of different types of SARS-CoV-2 vaccines which confer distinct immune mechanisms to establish immune response and protection against COVID-19: whole virus (inactivated or weakened), viral vector (replicating and non-replicating), nucleic acid (RNA, DNA), and protein-based (protein subunit, virus-like particle). Still, there is uncertainty among patients with AIIDs and clinicians about the effectiveness and safety of the new vaccines. There are a variety of approaches towards building a protective immunity against SARS-CoV-2. Only high-quality clinical trials would clarify the underlying immunological mechanisms of the newly implemented vaccines/adjuvants in patients living with AIIDs.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine

          Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently. Methods In an ongoing multinational, placebo-controlled, observer-blinded, pivotal efficacy trial, we randomly assigned persons 16 years of age or older in a 1:1 ratio to receive two doses, 21 days apart, of either placebo or the BNT162b2 vaccine candidate (30 μg per dose). BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-length spike protein. The primary end points were efficacy of the vaccine against laboratory-confirmed Covid-19 and safety. Results A total of 43,548 participants underwent randomization, of whom 43,448 received injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of Covid-19 with onset at least 7 days after the second dose among participants assigned to receive BNT162b2 and 162 cases among those assigned to placebo; BNT162b2 was 95% effective in preventing Covid-19 (95% credible interval, 90.3 to 97.6). Similar vaccine efficacy (generally 90 to 100%) was observed across subgroups defined by age, sex, race, ethnicity, baseline body-mass index, and the presence of coexisting conditions. Among 10 cases of severe Covid-19 with onset after the first dose, 9 occurred in placebo recipients and 1 in a BNT162b2 recipient. The safety profile of BNT162b2 was characterized by short-term, mild-to-moderate pain at the injection site, fatigue, and headache. The incidence of serious adverse events was low and was similar in the vaccine and placebo groups. Conclusions A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older. Safety over a median of 2 months was similar to that of other viral vaccines. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

            Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; p interaction =0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. Funding UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D’Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              mRNA vaccines — a new era in vaccinology

              mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
                Bookmark

                Author and article information

                Contributors
                tsvelikova@medfac.mu-sofia.bg
                tsetso@medfaculty.org
                Journal
                Rheumatol Int
                Rheumatol Int
                Rheumatology International
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0172-8172
                1437-160X
                30 January 2021
                : 1-10
                Affiliations
                [1 ]GRID grid.11355.33, ISNI 0000 0001 2192 3275, Department of Clinical Immunology, Medical Faculty, , University Hospital “Lozenetz”, Sofia University St. Kliment Ohridski, ; 1 Kozyak Str., 1407 Sofia, Bulgaria
                [2 ]GRID grid.20501.36, ISNI 0000 0000 8767 9052, First Department of Internal Medicine, Faculty of Medicine, , Medical University-Varna, ; 55 Marin Drinov Str., Varna, 9002 Bulgaria
                [3 ]GRID grid.460112.0, Clinic of Rheumatology, , University Hospital “St. Marina”, ; 1 Hristo Smirnenski Blvd., 9010 Varna, Bulgaria
                Author information
                http://orcid.org/0000-0002-0593-1272
                http://orcid.org/0000-0002-1652-4648
                Article
                4792
                10.1007/s00296-021-04792-9
                7846902
                33515320
                0397db69-c81e-46f5-9c6d-cbdbca90635b
                © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 22 December 2020
                : 13 January 2021
                Categories
                Review

                Rheumatology
                covid-19,sars-cov-2,covid-19 vaccines,autoimmune diseases,messenger rna,vaccination,rheumatic diseases

                Comments

                Comment on this article