1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanism of Exosomal LncRNA PART1 in Esophageal Cancer Angiogenesis by Targeting miR-302a-3p/CDC25A Axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          LncRNA PART1 has been confirmed related to multiple cancer bioactivities mediated with vascular endothelial growth factor signaling. Nevertheless, the role of LncRNA PART1 in esophageal cancer induced angiogenesis remains unclear. The present work focused on assessing LncRNA PART1 effects on esophageal cancer–induced angiogenesis and exploring possible mechanisms.

          Methods

          Western blot and immunofluorescence were conducted for identifying EC9706 exosomes. MiR-302a-3p and LncRNA PART1 levels were assessed by real-time quantitative polymerase chain reaction. Cell Counting Kit-8, EdU, wound healing, transwell, and tubule information were adopted for detecting human umbilical vein endothelial cell viability, proliferation, migration, invasion, and tubule information, respectively. Starbase software and dual-luciferase reporter were conducted for predicting and judging the expression interrelation of LncRNA PART1 and its potential target-miR-302a-3p. The same methods were carried out for verifying the inhibiting influences of miR-302a-3p upregulation and its potential target-cell division cycle 25 A.

          Results

          LncRNA PART1 levels were upregulated and related to the overall survival of patients in esophageal cancer. EC9706-Exos accelerated human umbilical vein endothelial cell proliferation, migration, invasion, and tubule formation via LncRNA PART1. LncRNA PART1 served as a sponge of miR-302a-3p, then miR-302a-3p targeted cell division cycle 25 A, and EC9706-Exos accelerated human umbilical vein endothelial cell angiogenesis via LncRNA PART1/ miR-302a-3p/cell division cycle 25 A axis.

          Conclusion

          EC9706-Exos accelerates human umbilical vein endothelial cell angiogenesis via LncRNA PART1/miR-302a-3p/ cell division cycle 25 A axis, indicating EC9706-Exos may act as a promoter of angiogenesis. Our research will contribute to clarify the mechanism of tumor angiogenesis.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication.

          Normal and malignant cells shed from their surface membranes as well as secrete from the endosomal membrane compartment circular membrane fragments called microvesicles (MV). MV that are released from viable cells are usually smaller in size compared to the apoptotic bodies derived from damaged cells and unlike them do not contain fragmented DNA. Growing experimental evidence indicates that MV are an underappreciated component of the cell environment and play an important pleiotropic role in many biological processes. Generally, MV are enriched in various bioactive molecules and may (i) directly stimulate cells as a kind of 'signaling complex', (ii) transfer membrane receptors, proteins, mRNA and organelles (e.g., mitochondria) between cells and finally (iii) deliver infectious agents into cells (e.g., human immuno deficiency virus, prions). In this review, we discuss the pleiotropic effects of MV that are important for communication between cells, as well as the role of MV in carcinogenesis, coagulation, immune responses and modulation of susceptibility/infectability of cells to retroviruses or prions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences.

            Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNAs and other non-coding RNAs as targets for anticancer drug development.

              The first cancer-targeted microRNA (miRNA) drug - MRX34, a liposome-based miR-34 mimic - entered Phase I clinical trials in patients with advanced hepatocellular carcinoma in April 2013, and miRNA therapeutics are attracting special attention from both academia and biotechnology companies. Although miRNAs are the most studied non-coding RNAs (ncRNAs) to date, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognized. Here, we summarize the roles of miRNAs and lncRNAs in cancer, with a focus on the recently identified novel mechanisms of action, and discuss the current strategies in designing ncRNA-targeting therapeutics, as well as the associated challenges.
                Bookmark

                Author and article information

                Journal
                Technol Cancer Res Treat
                Technol Cancer Res Treat
                TCT
                sptct
                Technology in Cancer Research & Treatment
                SAGE Publications (Sage CA: Los Angeles, CA )
                1533-0346
                1533-0338
                29 June 2023
                2023
                : 22
                : 15330338231184327
                Affiliations
                [1 ]Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
                [2 ]Department of Tumor Biobank, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
                Author notes
                [*]Xia He, Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, No.42 Baiziting, Nanjing 210009, Jiangsu Province, China. Email: hexiabm@ 123456163.com
                Author information
                https://orcid.org/0000-0002-7314-1002
                Article
                10.1177_15330338231184327
                10.1177/15330338231184327
                10333641
                37386808
                03e99e18-c460-4358-963b-9336b666def5
                © The Author(s) 2023

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 21 November 2022
                : 16 May 2023
                : 05 June 2023
                Funding
                Funded by: Jiangsu Institute of Cancer Research;
                Award ID: ZM201914
                Categories
                Original Article
                Custom metadata
                ts19
                January-December 2023

                lncpart1,exosome,huvecs,esophagus cancer,tumor angiogenesis
                lncpart1, exosome, huvecs, esophagus cancer, tumor angiogenesis

                Comments

                Comment on this article