7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Possible nematic to smectic phase transition in a two-dimensional electron gas at half-filling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Liquid crystalline phases of matter permeate nature and technology, with examples ranging from cell membranes to liquid-crystal displays. Remarkably, electronic liquid-crystal phases can exist in two-dimensional electron systems (2DES) at half Landau-level filling in the quantum Hall regime. Theory has predicted the existence of a liquid-crystal smectic phase that breaks both rotational and translational symmetries. However, previous experiments in 2DES are most consistent with an anisotropic nematic phase breaking only rotational symmetry. Here we report three transport phenomena at half-filling in ultra-low disorder 2DES: a non-monotonic temperature dependence of the sample resistance, dramatic onset of large time-dependent resistance fluctuations, and a sharp feature in the differential resistance suggestive of depinning. These data suggest that a sequence of symmetry-breaking phase transitions occurs as temperature is lowered: first a transition from an isotropic liquid to a nematic phase and finally to a liquid-crystal smectic phase.

          Abstract

          In the quantum Hall regime, strong interactions lead to the formation of unconventional spatially ordered electronic states. Qian et al. present evidence for a progressive sequence of transitions from isotropic through nematic to smectic phases in half-filled quantum Hall states.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electronic Liquid Crystal Phases of a Doped Mott Insulator

          The character of the ground state of an antiferromagnetic insulator is fundamentally altered upon addition of even a small amount of charge. The added charges agglomerate along domain walls at which the spin correlations, which may or may not remain long-ranged, suffer a \(\pi\) phase shift. In two dimensions, these domain walls are ``stripes'' which are either insulating, or conducting, i.e. metallic rivers with their own low energy degrees of freedom. However, quasi one-dimensional metals typically undergo a transition to an insulating ordered charge density wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large in comparison to the CDW coupling between stripes. As a consequence, there exist novel, liquid-crystalline low-temperature phases -- an electron smectic, with crystalline order in one direction, but liquid-like correlations in the other, and an electron nematic with orientational order but no long-range positional order. These phases, which constitute new states of matter, can be either high temperature supeconductors or two-dimensional anisotropic ``metallic'' non-Fermi liquids. Evidence for the new phases may already have been obtained by neutron scattering experiments in the cuprate superconductor, La_{1.6-x}Nd_{0.4}Sr_xCuO_{4}.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3Oy

            , , (2013)
            Superconductivity often emerges in the proximity of, or in competition with, symmetry breaking ground states such as antiferromagnetism or charge density waves (CDW)1-5. A number of materials in the cuprate family, which includes the high-transition-temperature (high-Tc) superconductors, show spin and charge density wave order5-7. Thus a fundamental question is to what extent these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy x-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity are competing orders in this typical high-Tc superconductor, and high-Tc superconductivity can form from a pre-existing CDW state. Our results explain observations of small Fermi surface pockets8, negative Hall and Seebeck effect9,10 and the "Tc plateau"11 in this material when underdoped.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Charge Density Wave in Two-Dimensional Electron Liquid in Weak Magnetic Field

              We study the ground state of a clean two-dimensional electron liquid in a weak magnetic field where \(N \gg 1\) lower Landau levels are completely filled and the upper level is partially filled. It is shown that the electrons at the upper Landau level form domains with filling factor equal to one and zero. The domains alternate with a spatial period of order of the cyclotron radius, which is much larger than the interparticle distance at the upper Landau level. The one-particle density of states, which can be probed by tunneling experiments, is shown to have a pseudogap linearly dependent on the magnetic field in the limit of large \(N\).
                Bookmark

                Author and article information

                Contributors
                mmanfra@purdue.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                16 November 2017
                16 November 2017
                2017
                : 8
                : 1536
                Affiliations
                [1 ]ISNI 0000 0004 1937 2197, GRID grid.169077.e, Department of Physics and Astronomy, , Purdue University, ; West Lafayette, IN 47907 USA
                [2 ]ISNI 0000 0004 1937 2197, GRID grid.169077.e, Birck Nanotechnology Center, , Purdue University, ; West Lafayette, IN 47907 USA
                [3 ]ISNI 0000 0004 1937 2197, GRID grid.169077.e, Station Q Purdue, , Purdue University, ; West Lafayette, IN 47907 USA
                [4 ]ISNI 0000 0004 1937 2197, GRID grid.169077.e, School of Materials Engineering, , Purdue University, ; West Lafayette, IN 47907 USA
                [5 ]ISNI 0000 0004 1937 2197, GRID grid.169077.e, School of Electrical and Computer Engineering, , Purdue University, ; West Lafayette, IN 47907 USA
                Article
                1810
                10.1038/s41467-017-01810-y
                5688147
                04342d2c-b1a7-41e7-b932-1d3778c76c18
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 June 2017
                : 13 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article