8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulations of Retinal Inflammation: Focusing on Müller Glia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinal inflammation underlies multiple prevalent retinal diseases. While microglia are one of the most studied cell types regarding retinal inflammation, growing evidence shows that Müller glia play critical roles in the regulation of retinal inflammation. Müller glia express various receptors for cytokines and release cytokines to regulate inflammation. Müller glia are part of the blood-retinal barrier and interact with microglia in the inflammatory responses. The unique metabolic features of Müller glia in the retina makes them vital for retinal homeostasis maintenance, regulating retinal inflammation by lipid metabolism, purine metabolism, iron metabolism, trophic factors, and antioxidants. miRNAs in Müller glia regulate inflammatory responses via different mechanisms and potentially regulate retinal regeneration. Novel therapies are explored targeting Müller glia for inflammatory retinal diseases treatment. Here we review new findings regarding the roles of Müller glia in retinal inflammation and discuss the related novel therapies for retinal diseases.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: not found
          • Article: not found

          MicroRNAs

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment.

            The cytokine macrophage migration inhibitory factor (MIF) plays a critical role in inflammatory diseases and atherogenesis. We identify the chemokine receptors CXCR2 and CXCR4 as functional receptors for MIF. MIF triggered G(alphai)- and integrin-dependent arrest and chemotaxis of monocytes and T cells, rapid integrin activation and calcium influx through CXCR2 or CXCR4. MIF competed with cognate ligands for CXCR4 and CXCR2 binding, and directly bound to CXCR2. CXCR2 and CD74 formed a receptor complex, and monocyte arrest elicited by MIF in inflamed or atherosclerotic arteries involved both CXCR2 and CD74. In vivo, Mif deficiency impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice, and MIF-induced leukocyte recruitment required Il8rb (which encodes Cxcr2). Blockade of Mif but not of canonical ligands of Cxcr2 or Cxcr4 in mice with advanced atherosclerosis led to plaque regression and reduced monocyte and T-cell content in plaques. By activating both CXCR2 and CXCR4, MIF displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis. Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for local inflammation in the formation of drusen in the aging eye.

              The accumulation of numerous or confluent drusen, especially in the macula, is a significant risk factor for the development of age-related macular degeneration (AMD). Identifying the origin and molecular composition of these deposits, therefore, has been an important, yet elusive, objective for many decades. Recently, a more complete profile of the molecular composition of drusen has emerged. In this focused review, we discuss these new findings and their implications for the pathogenic events that give rise to drusen and AMD. Tissue specimens from one or both eyes of more than 400 human donors were examined by light, confocal or electron microscopy, in conjunction with antibodies to specific drusen-associated proteins, to help characterize the transitional events in drusen biogenesis. Quantification of messenger RNA from the retinal pigment epithelium (RPE)/choroid of donor eyes was used to determine if local ocular sources for drusen-associated molecules exist. The results indicate that cellular remnants and debris derived from degenerate RPE cells become sequestered between the RPE basal lamina and Bruch's membrane. We propose that this cellular debris constitutes a chronic inflammatory stimulus, and a potential "nucleation" site for drusen formation. The entrapped cellular debris then becomes the target of encapsulation by a variety of inflammatory mediators, some of which are contributed by the RPE and, perhaps, other local cell types; and some of which are extravasated from the choroidal circulation. The results support a role for local inflammation in drusen biogenesis, and suggest that it is analogous to the process that occurs in other age-related diseases, such as Alzheimer's disease and atherosclerosis, where accumulation of extracellular plaques and deposits elicits a local chronic inflammatory response that exacerbates the effects of primary pathogenic stimuli.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                27 April 2022
                2022
                : 10
                : 898652
                Affiliations
                [1] 1 Department of Ophthalmology , Sichuan University West China Hospital , Sichuan University , Chengdu, China
                [2] 2 Research Laboratory of Macular Disease , West China Hospital , Sichuan University , Chengdu, China
                [3] 3 Operating Room of Anesthesia Surgery Center , West China Hospital , Sichuan University , Chengdu, China
                [4] 4 West China School of Nursing , Sichuan University , Chengdu, China
                Author notes

                Edited by: Wenru Su, Sun Yat-sen University, China

                Reviewed by: Jingfa Zhang, Shanghai General Hospital, China

                ShiYing Li, Xiamen University, China

                *Correspondence: Meixia Zhang, zhangmeixia@ 123456scu.edu.cn
                [ † ]

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Molecular and Cellular Pathology, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                898652
                10.3389/fcell.2022.898652
                9091449
                35573676
                0436af00-28a4-48f8-80d8-846162df2b69
                Copyright © 2022 Chen, Xia, Zeng, Zhang and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 March 2022
                : 11 April 2022
                Funding
                Funded by: Sichuan Province Science and Technology Support Program , doi 10.13039/100012542;
                Categories
                Cell and Developmental Biology
                Review

                retinal inflammation,müller glia,cytokines,mirna,regeneration

                Comments

                Comment on this article