1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic and epigenetic regulation of phenotypic variation in invasive plants – linking research trends towards a unified framework

      , ,

      NeoBiota

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phenotypic variation in the introduced range of an invasive species can be modified by genetic variation, environmental conditions and their interaction, as well as stochastic events like genetic drift. Recent studies found that epigenetic modifications may also contribute to phenotypic variation being independent of genetic changes. Despite gaining profound ecological insights from empirical studies, understanding the relative contributions of these molecular mechanisms behind phenotypic variation has received little attention for invasive plant species in particular.

          This review therefore aimed at summarizing and synthesizing information on the genetic and epigenetic basis of phenotypic variation of alien invasive plants in the introduced range and their evolutionary consequences. Transgenerational inheritance of epigenetic modifications was highlighted focusing on its influence on microevolution of the invasive plant species. We presented a comprehensive account of epigenetic regulation of phenotypic variation and its role in plant invasion in the presence of reduced standing genetic variation, inbreeding depression and associated genomic events which have often been observed during introduction and range expansion of an invasive alien species. Finally, taking clues from the studies conducted so far, we proposed a unified framework of future experimental approaches to understand ecological and evolutionary aspects of phenotypic variation. This holistic approach, being aligned to the invasion process in particular (introduction-establishment-spread), was intended to understand the molecular mechanisms of phenotypic variation of an invasive species in its introduced range and to disentangle the effects of standing genetic variation and epigenetic regulation of phenotypic variation.

          Related collections

          Most cited references 110

          • Record: found
          • Abstract: found
          • Article: not found

          Plant phenotypic plasticity in a changing climate.

          Climate change is altering the availability of resources and the conditions that are crucial to plant performance. One way plants will respond to these changes is through environmentally induced shifts in phenotype (phenotypic plasticity). Understanding plastic responses is crucial for predicting and managing the effects of climate change on native species as well as crop plants. Here, we provide a toolbox with definitions of key theoretical elements and a synthesis of the current understanding of the molecular and genetic mechanisms underlying plasticity relevant to climate change. By bringing ecological, evolutionary, physiological and molecular perspectives together, we hope to provide clear directives for future research and stimulate cross-disciplinary dialogue on the relevance of phenotypic plasticity under climate change. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.

            Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. We report here the identification of ICE1 (inducer of CBF expression 1), an upstream transcription factor that regulates the transcription of CBF genes in the cold. An Arabidopsis ice1 mutant was isolated in a screen for mutations that impair cold-induced transcription of a CBF3 promoter-luciferase reporter gene. The ice1 mutation blocks the expression of CBF3 and decreases the expression of many genes downstream of CBFs, which leads to a significant reduction in plant chilling and freezing tolerance. ICE1 encodes a MYC-like bHLH transcriptional activator. ICE1 binds specifically to the MYC recognition sequences in the CBF3 promoter. ICE1 is expressed constitutively, and its overexpression in wild-type plants enhances the expression of the CBF regulon in the cold and improves freezing tolerance of the transgenic plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenotypic and genetic differentiation between native and introduced plant populations.

              Plant invasions often involve rapid evolutionary change. Founder effects, hybridization, and adaptation to novel environments cause genetic differentiation between native and introduced populations and may contribute to the success of invaders. An influential idea in this context has been the Evolution of Increased Competitive Ability (EICA) hypothesis. It proposes that after enemy release plants rapidly evolve to be less defended but more competitive, thereby increasing plant vigour in introduced populations. To detect evolutionary change in invaders, comparative studies of native versus introduced populations are needed. Here, we review the current empirical evidence from: (1) comparisons of phenotypic variation in natural populations; (2) comparisons of molecular variation with neutral genetic markers; (3) comparisons of quantitative genetic variation in a common environment; and (4) comparisons of phenotypic plasticity across different environments. Field data suggest that increased vigour and reduced herbivory are common in introduced plant populations. In molecular studies, the genetic diversity of introduced populations was not consistently different from that of native populations. Multiple introductions of invasive plants appear to be the rule rather than the exception. In tests of the EICA hypothesis in a common environment, several found increased growth or decreased resistance in introduced populations. However, few provided a full test of the EICA hypothesis by addressing growth and defence in the same species. Overall, there is reasonable empirical evidence to suggest that genetic differentiation through rapid evolutionary change is important in plant invasions. We discuss conceptual and methodological issues associated with cross-continental comparisons and make recommendations for future research. When testing for EICA, greater emphasis should be put on competitive ability and plant tolerance. Moreover, it is important to address evolutionary change in characteristics other than defence and growth that could play a role in plant invasions.
                Bookmark

                Author and article information

                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                August 19 2019
                August 19 2019
                : 49
                : 77-103
                Article
                10.3897/neobiota.49.33723
                © 2019

                Comments

                Comment on this article