7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Pros and cons of phage therapy.

          Many publications list advantages and disadvantages associated with phage therapy, which is the use of bacterial viruses to combat populations of nuisance or pathogenic bacteria. The goal of this commentary is to discuss many of those issues in a single location. In terms of "Pros," for example, phages can be bactericidal, can increase in number over the course of treatment, tend to only minimally disrupt normal flora, are equally effective against antibiotic-sensitive and antibiotic-resistant bacteria, often are easily discovered, seem to be capable of disrupting bacterial biofilms, and can have low inherent toxicities. In addition to these assets, we consider aspects of phage therapy that can contribute to its safety, economics, or convenience, but in ways that are perhaps less essential to the phage potential to combat bacteria. For example, autonomous phage transfer between animals during veterinary application could provide convenience or economic advantages by decreasing the need for repeated phage application, but is not necessarily crucial to therapeutic success. We also consider possible disadvantages to phage use as antibacterial agents. These "Cons," however, tend to be relatively minor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lysogeny in nature: mechanisms, impact and ecology of temperate phages.

            Viruses that infect bacteria (phages) can influence bacterial community dynamics, bacterial genome evolution and ecosystem biogeochemistry. These influences differ depending on whether phages establish lytic, chronic or lysogenic infections. Although the first two produce virion progeny, with lytic infections resulting in cell destruction, phages undergoing lysogenic infections replicate with cells without producing virions. The impacts of lysogeny are numerous and well-studied at the cellular level, but ecosystem-level consequences remain underexplored compared to those of lytic infections. Here, we review lysogeny from molecular mechanisms to ecological patterns to emerging approaches of investigation. Our goal is to highlight both its diversity and importance in complex communities. Altogether, using a combined viral ecology toolkit that is applied across broad model systems and environments will help us understand more of the diverse lifestyles and ecological impacts of lysogens in nature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacteria-phage antagonistic coevolution in soil.

              Bacteria and their viruses (phages) undergo rapid coevolution in test tubes, but the relevance to natural environments is unclear. By using a "mark-recapture" approach, we showed rapid coevolution of bacteria and phages in a soil community. Unlike coevolution in vitro, which is characterized by increases in infectivity and resistance through time (arms race dynamics), coevolution in soil resulted in hosts more resistant to their contemporary than past and future parasites (fluctuating selection dynamics). Fluctuating selection dynamics, which can potentially continue indefinitely, can be explained by fitness costs constraining the evolution of high levels of resistance in soil. These results suggest that rapid coevolution between bacteria and phage is likely to play a key role in structuring natural microbial communities.
                Bookmark

                Author and article information

                Journal
                Plant Pathol J
                Plant Pathol. J
                The Plant Pathology Journal
                Korean Society of Plant Pathology
                1598-2254
                2093-9280
                1 June 2020
                1 June 2020
                1 June 2020
                : 36
                : 3
                : 204-217
                Affiliations
                [1]Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
                Author notes
                [* ]Corresponding author. Phone) +82-31-201-2678, FAX) +82-31-204-8116, E-mail) co35@ 123456khu.ac.kr , ORCID Chang-Sik Oh https://orcid.org/0000-0002-2123-862X

                Handling Editor : Nai-Chun Lin

                Article
                PPJ-36-204
                10.5423/PPJ.RW.04.2020.0074
                7272851
                32547337
                051b7888-1e01-40e3-b723-e643ae0a036c
                © The Korean Society of Plant Pathology

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 April 2020
                : 13 May 2020
                Categories
                Review

                bacteriophages,disease management,plant-pathogenic bacteria

                Comments

                Comment on this article