Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fast Detection of 10 Cannabinoids by RP-HPLC-UV Method in Cannabis sativa L.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cannabis has regained much attention as a result of updated legislation authorizing many different uses and can be classified on the basis of the content of tetrahydrocannabinol (THC), a psychotropic substance for which there are legal limitations in many countries. For this purpose, accurate qualitative and quantitative determination is essential. The relationship between THC and cannabidiol (CBD) is also significant as the latter substance is endowed with many specific and non-psychoactive proprieties. For these reasons, it becomes increasingly important and urgent to utilize fast, easy, validated, and harmonized procedures for determination of cannabinoids. The procedure described herein allows rapid determination of 10 cannabinoids from the inflorescences of Cannabis sativa L. by extraction with organic solvents. Separation and subsequent detection are by RP-HPLC-UV. Quantification is performed by an external standard method through the construction of calibration curves using pure standard chromatographic reference compounds. The main cannabinoids dosed (g/100 g) in actual samples were cannabidiolic acid (CBDA), CBD, and Δ9-THC (Sample L11 CBDA 0.88 ± 0.04, CBD 0.48 ± 0.02, Δ9-THC 0.06 ± 0.00; Sample L5 CBDA 0.93 ± 0.06, CBD 0.45 ± 0.03, Δ9-THC 0.06 ± 0.00). The present validated RP-HPLC-UV method allows determination of the main cannabinoids in Cannabis sativa L. inflorescences and appropriate legal classification as hemp or drug-type.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes.

          The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled conditions. Every week, three plants from each variety were cut and dried, and the leaves and flowers were analyzed separately. Eight major cannabinoids were analyzed via HPLC-DAD, and 28 terpenes were quantified using GC-FID and verified via GC-MS. The chemotypes of the plants, as defined by the tetrahydrocannabinolic acid/cannabidiolic acid (THCA/CBDA) ratio, were clear from the beginning and stable during growth. The concentrations of the major cannabinoids and terpenes were determined, and different patterns were found among the chemotypes. In particular, the plants from chemotypes II and III needed more time to reach peak production of THCA, CBDA, and monoterpenes. Differences in the cannabigerolic acid development among the different chemotypes and between monoterpene and sesquiterpene evolution patterns were also observed. Plants of different chemotypes were clearly differentiated by their terpene content, and characteristic terpenes of each chemotype were identified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp)

            The present work was aimed at the development and validation of a new, efficient and reliable technique for the analysis of the main non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) inflorescences belonging to different varieties. This study was designed to identify samples with a high content of bioactive compounds, with a view to underscoring the importance of quality control in derived products as well. Different extraction methods, including dynamic maceration (DM), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical-fluid extraction (SFE) were applied and compared in order to obtain a high yield of the target analytes from hemp. Dynamic maceration for 45min with ethanol (EtOH) at room temperature proved to be the most suitable technique for the extraction of cannabinoids in hemp samples. The analysis of the target analytes in hemp extracts was carried out by developing a new reversed-phase high-performance liquid chromatography (HPLC) method coupled with diode array (UV/DAD) and electrospray ionization-mass spectrometry (ESI-MS) detection, by using an ion trap mass analyser. An Ascentis Express C18 column (150mm×3.0mm I.D., 2.7μm) was selected for the HPLC analysis, with a mobile phase composed of 0.1% formic acid in both water and acetonitrile, under gradient elution. The application of the fused-core technology allowed us to obtain a significant improvement of the HPLC performance compared with that of conventional particulate stationary phases, with a shorter analysis time and a remarkable reduction of solvent usage. The analytical method optimized in this study was fully validated to show compliance with international requirements. Furthermore, it was applied to the characterization of nine hemp samples and six hemp-based pharmaceutical products. As such, it was demonstrated to be a very useful tool for the analysis of cannabinoids in both the plant material and its derivatives for pharmaceutical and nutraceutical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp)

              Cannabis sativa L. is a dioecious plant belonging to the Cannabaceae family. The main phytochemicals that are found in this plant are represented by cannabinoids, flavones, and terpenes. Some biological activities of cannabinoids are known to be enhanced by the presence of terpenes and flavonoids in the extracts, due to a synergistic action. In the light of all the above, the present study was aimed at the multi-component analysis of the bioactive compounds present in fibre-type C. sativa (hemp) inflorescences of different varieties by means of innovative HPLC and GC methods. In particular, the profiling of non-psychoactive cannabinoids was carried out by means of HPLC-UV/DAD, ESI-MS, and MS2. The content of prenylated flavones in hemp extracts, including cannflavins A and B, was also evaluated by HPLC. The study on Cannabis volatile compounds was performed by developing a new method based on headspace solid-phase microextraction (HS-SPME) coupled with GC-MS and GC-FID. Cannabidiolic acid (CBDA) and cannabidiol (CBD) were found to be the most abundant cannabinoids in the hemp samples analysed, while β-myrcene and β-caryophyllene were the major terpenes. As regards flavonoids, cannflavin A was observed to be the main compound in almost all the samples. The methods developed in this work are suitable for the comprehensive chemical analysis of both hemp plant material and related pharmaceutical or nutraceutical products in order to ensure their quality, efficacy, and safety.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                04 June 2019
                June 2019
                : 24
                : 11
                : 2113
                Affiliations
                [1 ]Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Viale Fanin 40, 40127 Bologna, Italy; mara.mandrioli@ 123456unibo.it (M.M.); matilde.tura2@ 123456unibo.it (M.T.)
                [2 ]Shimadzu Italia, Via G. B. Cassinis 7, 20139 Milano, Italy; sscotti@ 123456shimadzu.it
                Author notes
                [* ]Correspondence: tullia.gallinatoschi@ 123456unibo.it ; Tel.: +39-051-209-6010
                Author information
                https://orcid.org/0000-0001-7241-2280
                Article
                molecules-24-02113
                10.3390/molecules24112113
                6600594
                31167395
                056a901b-566a-42e3-9504-a4355db995b9
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 May 2019
                : 31 May 2019
                Categories
                Article

                cannabinoids,cannabis sativa l.,hplc,validation
                cannabinoids, cannabis sativa l., hplc, validation

                Comments

                Comment on this article