14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Allergenic pollen production across a large city for common ragweed ( Ambrosia artemisiifolia)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Predictions of airborne allergenic pollen concentrations at fine spatial scales require information on source plant location and pollen production. Such data are lacking at the urban scale, largely because manually mapping allergenic pollen producing plants across large areas is infeasible. However, modest-sized field surveys paired with allometric equations, remote sensing, and habitat distribution models can predict where these plants occur and how much pollen they produce. In this study, common ragweed ( Ambrosia artemisiifolia) was mapped in a field survey in Detroit, MI, USA. The relationship between ragweed presence and habitat-related variables derived from aerial imagery, LiDAR, and municipal data were used to create a habitat distribution model, which was then used to predict ragweed presence across the study area (392 km 2). The relationship between inflorescence length and pollen production was used to predict pollen production in the city. Ragweed occurs in 1.7% of Detroit and total pollen production is 312 × 10 12 pollen grains annually, but ragweed presence was highly heterogeneous across the city. Ragweed was predominantly found in in vacant lots (75%) and near demolished structures (48%), and had varying associations with land cover types (e.g., sparse vegetation, trees, pavement) detected by remote sensing. These findings also suggest several management strategies that could help reduce levels of allergenic pollen, including appropriate post-demolition management practices. Spatially-resolved predictions for pollen production will allow mechanistic modeling of airborne allergenic pollen and improved exposure estimates for use in epidemiological and other applications.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R

          Summary: Precision-recall (PR) and receiver operating characteristic (ROC) curves are valuable measures of classifier performance. Here, we present the R-package PRROC, which allows for computing and visualizing both PR and ROC curves. In contrast to available R-packages, PRROC allows for computing PR and ROC curves and areas under these curves for soft-labeled data using a continuous interpolation between the points of PR curves. In addition, PRROC provides a generic plot function for generating publication-quality graphics of PR and ROC curves. Availability and implementation: PRROC is available from CRAN and is licensed under GPL 3. Contact: grau@informatik.uni-halle.de
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Will remote sensing shape the next generation of species distribution models?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate Change and Future Pollen Allergy in Europe

              Background: Globally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans.Background: Globally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans. Objectives: We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed (Ambrosia artemisiifolia) in Europe.Objectives: We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed (Ambrosia artemisiifolia) in Europe. Methods: A process-based model estimated the change in ragweed’s range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose–response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios.Methods: A process-based model estimated the change in ragweed’s range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose–response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios. Results: Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041–2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results.Results: Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041–2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results. Conclusions: Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change.Conclusions: Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change. Citation: Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov MA, Solomon F, Storkey J, Vautard R, Epstein MM. 2017. Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385–391; http://dx.doi.org/10.1289/EHP173Citation: Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov MA, Solomon F, Storkey J, Vautard R, Epstein MM. 2017. Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385–391; http://dx.doi.org/10.1289/EHP173
                Bookmark

                Author and article information

                Journal
                101087690
                29130
                Landsc Urban Plan
                Landsc Urban Plan
                Landscape and urban planning
                0169-2046
                24 August 2019
                20 July 2019
                October 2019
                01 October 2020
                : 190
                : 103615
                Affiliations
                School of Public Health, University of Michigan – Ann Arbor, Ann Arbor, MI, USA
                Author notes
                [* ]Corresponding author at: 6653 SPH 1, 1415 Washington Heights Rd., Ann Arbor, MI 48109, USA. dwkatz@ 123456umich.edu (D.S.W. Katz), stuartb@ 123456umich.edu (S.A. Batterman).
                Article
                NIHMS1534740
                10.1016/j.landurbplan.2019.103615
                7442281
                32831442
                05e02826-ebaa-44bb-8b8d-a29a7e196db1

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/BY-NC-ND/4.0/).

                History
                Categories
                Article

                aerial imagery,allergic rhinitis,habitat distribution modeling,lidar,urban ecology,vacant lots

                Comments

                Comment on this article