0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation of PDA-GO/CS composite scaffold and its effects on the biological properties of human dental pulp stem cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reduced graphene oxide (rGO) is an graphene oxide (GO) derivative of graphene, which has a large specific surface area and exhibited satisfactory physicochemical characteristics. In this experiment, GO was reduced by PDA to generate PDA-GO complex, and then PDA-GO was combined with Chitosan (CS) to synthesize PDA-GO/CS composite scaffold. PDA-GO was added to CS to improve the degradation rate of CS, and it was hoped that PDA-GO/CS composite scaffolds could be used in bone tissue engineering. Physicochemical and antimicrobial properties of the different composite scaffolds were examined to find the optimal mass fraction. Besides, we examined the scaffold’s biocompatibility by Phalloidin staining and Live and Dead fluorescent staining.

          Finally, we applied ALP staining, RT-qPCR, and Alizarin red S staining to detect the effect of PDA-GO/CS on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). The results showed that PDA-GO composite was successfully prepared and PDA-GO/CS composite scaffold was synthesized by combining PDA-GO with CS. Among them, 0.3%PDA-GO/CS scaffolds improves the antibacterial activity and hydrophilicity of CS, while reducing the degradation rate. In vitro, PDA-GO/CS has superior biocompatibility and enhances the early proliferation, migration and osteogenic differentiation of hDPSCs. In conclusion, PDA-GO/CS is a new scaffold materialsuitable for cell culture and has promising application prospect as scaffold for bone tissue engineering.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Mussel-inspired surface chemistry for multifunctional coatings.

          We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preparation and characterization of graphene oxide paper.

            Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications

              This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA) and molecular weight (MW). In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone). Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability.
                Bookmark

                Author and article information

                Contributors
                hongbinglu@126.com
                Journal
                BMC Oral Health
                BMC Oral Health
                BMC Oral Health
                BioMed Central (London )
                1472-6831
                31 January 2024
                31 January 2024
                2024
                : 24
                : 157
                Affiliations
                [1 ]Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, ( https://ror.org/050s6ns64) Fuzhou, Fujian People’s Republic of China
                [2 ]School and Hospital of Stomatology, Fujian Medical University, ( https://ror.org/050s6ns64) Fuzhou, Fujian People’s Republic of China
                Article
                3849
                10.1186/s12903-023-03849-4
                10832331
                38297260
                05f631e1-fd56-4ead-9826-dbc28b611e3f
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 14 September 2023
                : 31 December 2023
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Dentistry
                maxillofacial bone tissue regeneration,human dental pulp stem cells,chitosan scaffold,reduced graphene oxide,pda-go/cs composite scaffolds,tissue engineering

                Comments

                Comment on this article