3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Toward a mechanistic and physiological understanding of a ferredoxin:disulfide reductase from the domains Archaea and Bacteria

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d462562e302">Disulfide reductases reduce other proteins and are critically important for cellular redox signaling and homeostasis. <i>Methanosarcina acetivorans</i> is a methane-producing microbe from the domain Archaea that produces a ferredoxin:disulfide reductase (FDR) for which the crystal structure has been reported, yet its biochemical mechanism and physiological substrates are unknown. FDR and the extensively characterized plant-type ferredoxin:thioredoxin reductase (FTR) belong to a distinct class of disulfide reductases that contain a unique active-site [4Fe-4S] cluster. The results reported here support a mechanism for FDR similar to that reported for FTR with notable exceptions. Unlike FTR, FDR contains a rubredoxin [1Fe-0S] center postulated to mediate electron transfer from ferredoxin to the active-site [4Fe-4S] cluster. UV-visible, EPR, and Mössbauer spectroscopic data indicated that two-electron reduction of the active-site disulfide in FDR involves a one-electron-reduced [4Fe-4S] <sup>1+</sup> intermediate previously hypothesized for FTR. Our results support a role for an active-site tyrosine in FDR that occupies the equivalent position of an essential histidine in the active site of FTR. Of note, one of seven Trxs encoded in the genome (Trx5) and methanoredoxin, a glutaredoxin-like enzyme from <i>M. acetivorans</i>, were reduced by FDR, advancing the physiological understanding of FDR's role in the redox metabolism of methanoarchaea. Finally, bioinformatics analyses show that FDR homologs are widespread in diverse microbes from the domain Bacteria. </p>

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The global methane cycle: recent advances in understanding the microbial processes involved.

          The global budget of atmospheric CH4 , which is on the order of 500-600 Tg CH4 per year, is mainly the result of environmental microbial processes, such as archaeal methanogenesis in wetlands, rice fields, ruminant and termite digestive systems and of microbial methane oxidation under anoxic and oxic conditions. This review highlights recent progress in the research of anaerobic CH4 oxidation, of CH4 production in the plant rhizosphere, of CH4 serving as substrate for the aquatic trophic food chain and the discovery of novel aerobic methanotrophs. It also emphasizes progress and deficiencies in our knowledge of microbial utilization of low atmospheric CH4 concentrations in soil, CH4 production in the plant canopy, intestinal methanogenesis and CH4 production in pelagic water. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thioredoxins and glutaredoxins: unifying elements in redox biology.

            Since their discovery as a substrate for ribonucleotide reductase (RNR), the role of thioredoxin (Trx) and glutaredoxin (Grx) has been largely extended through their regulatory function. Both proteins act by changing the structure and activity of a broad spectrum of target proteins, typically by modifying redox status. Trx and Grx are members of families with multiple and partially redundant genes. The number of genes clearly increased with the appearance of multicellular organisms, in part because of new types of Trx and Grx with orthologs throughout the animal and plant kingdoms. The function of Trx and Grx also broadened as cells achieved increased complexity, especially in the regulation arena. In view of these progressive changes, the ubiquitous distribution of Trx and the wide occurrence of Grx enable these proteins to serve as indicators of the evolutionary history of redox regulation. In so doing, they add a unifying element that links the diverse forms of life to one another in an uninterrupted continuum. It is anticipated that future research will embellish this continuum and further elucidate the properties of these proteins and their impact on biology. The new information will be important not only to our understanding of the role of Trx and Grx in fundamental cell processes but also to future societal benefits as the proteins find new applications in a range of fields.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A colorimetric method for determining low concentrations of mercaptans.

                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                June 15 2018
                June 15 2018
                June 15 2018
                May 02 2018
                : 293
                : 24
                : 9198-9209
                Article
                10.1074/jbc.RA118.002473
                6005431
                29720404
                067b1cc3-7c12-4a8f-867d-af5fffac8835
                © 2018
                History

                Comments

                Comment on this article