Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurological Disease Modelling for Spinocerebellar Ataxia Using Zebrafish

      article-commentary

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cerebellum integrates sensory information and motor actions. Increasing experimental evidence has revealed that these functions as well as the cerebellar cytoarchitecture are highly conserved in zebrafish compared with mammals. However, the potential of zebrafish for modelling human cerebellar diseases remains to be addressed. Spinocerebellar ataxias (SCAs) represent a group of genetically inherited cerebellar diseases leading to motor discoordination that is most often caused by affected cerebellar Purkinje cells (PCs). Towards modelling SCAs in zebrafish we identified a small-sized PC-specific regulatory element that was used to develop coexpression vectors with tunable expression strength. These vectors allow for in vivo imaging of SCA-affected PCs by high-resolution fluorescence imaging. Next, zebrafish with SCA type 13 (SCA13) transgene expression were established, revealing that SCA13-induced cell-autonomous PC degeneration results in eye movement deficits. Thus, SCA13 zebrafish mimic the neuropathology of an SCA-affected brain as well as the involved loss of motor control and hence provide a powerful approach to unravel SCA13-induced cell biological pathogenic and cytotoxic mechanisms.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Cerebellar circuitry as a neuronal machine.

          Masao ITO (2006)
          Shortly after John Eccles completed his studies of synaptic inhibition in the spinal cord, for which he was awarded the 1963 Nobel Prize in physiology/medicine, he opened another chapter of neuroscience with his work on the cerebellum. From 1963 to 1967, Eccles and his colleagues in Canberra successfully dissected the complex neuronal circuitry in the cerebellar cortex. In the 1967 monograph, "The Cerebellum as a Neuronal Machine", he, in collaboration with Masao Ito and Janos Szentágothai, presented blue-print-like wiring diagrams of the cerebellar neuronal circuitry. These stimulated worldwide discussions and experimentation on the potential operational mechanisms of the circuitry and spurred theoreticians to develop relevant network models of the machinelike function of the cerebellum. In following decades, the neuronal machine concept of the cerebellum was strengthened by additional knowledge of the modular organization of its structure and memory mechanism, the latter in the form of synaptic plasticity, in particular, long-term depression. Moreover, several types of motor control were established as model systems representing learning mechanisms of the cerebellum. More recently, both the quantitative preciseness of cerebellar analyses and overall knowledge about the cerebellum have advanced considerably at the cellular and molecular levels of analysis. Cerebellar circuitry now includes Lugaro cells and unipolar brush cells as additional unique elements. Other new revelations include the operation of the complex glomerulus structure, intricate signal transduction for synaptic plasticity, silent synapses, irregularity of spike discharges, temporal fidelity of synaptic activation, rhythm generators, a Golgi cell clock circuit, and sensory or motor representation by mossy fibers and climbing fibers. Furthermore, it has become evident that the cerebellum has cognitive functions, and probably also emotion, as well as better-known motor and autonomic functions. Further cerebellar research is required for full understanding of the cerebellum as a broad learning machine for neural control of these functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spinocerebellar ataxia

            The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes.

              Potassium channel mutations have been described in episodic neurological diseases. We report that K+ channel mutations cause disease phenotypes with neurodevelopmental and neurodegenerative features. In a Filipino adult-onset ataxia pedigree, the causative gene maps to 19q13, overlapping the SCA13 disease locus described in a French pedigree with childhood-onset ataxia and cognitive delay. This region contains KCNC3 (also known as Kv3.3), encoding a voltage-gated Shaw channel with enriched cerebellar expression. Sequencing revealed two missense mutations, both of which alter KCNC3 function in Xenopus laevis expression systems. KCNC3(R420H), located in the voltage-sensing domain, had no channel activity when expressed alone and had a dominant-negative effect when co-expressed with the wild-type channel. KCNC3(F448L) shifted the activation curve in the negative direction and slowed channel closing. Thus, KCNC3(R420H) and KCNC3(F448L) are expected to change the output characteristics of fast-spiking cerebellar neurons, in which KCNC channels confer capacity for high-frequency firing. Our results establish a role for KCNC3 in phenotypes ranging from developmental disorders to adult-onset neurodegeneration and suggest voltage-gated K+ channels as candidates for additional neurodegenerative diseases.
                Bookmark

                Author and article information

                Journal
                J Exp Neurosci
                J Exp Neurosci
                EXN
                spexn
                Journal of Experimental Neuroscience
                SAGE Publications (Sage UK: London, England )
                1179-0695
                17 October 2019
                2019
                : 13
                : 1179069519880515
                Affiliations
                [1-1179069519880515]Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
                Author notes
                [*]Kazuhiko Namikawa, Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany. Email: k.namikawa@ 123456tu-bs.de
                [*]Reinhard W Köster, Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany. Email: r.koester@ 123456tu-bs.de
                Author information
                https://orcid.org/0000-0002-2207-6028
                https://orcid.org/0000-0001-6593-8196
                Article
                10.1177_1179069519880515 EXN-19-0049
                10.1177/1179069519880515
                6798160
                31666796
                06c97920-e619-4abe-aba9-05d028d5b0fd
                © The Author(s) 2019

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 12 September 2019
                : 13 September 2019
                Categories
                Commentary
                Custom metadata
                January-December 2019

                zebrafish,disease modelling,purkinje neurons,spinocerebellar degeneration,neurodegeneration

                Comments

                Comment on this article