Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab.

      Blood
      Antibodies, Monoclonal, immunology, pharmacology, Antibodies, Monoclonal, Humanized, Antibodies, Neoplasm, Antigens, CD, biosynthesis, Antigens, Neoplasm, Dendritic Cells, drug effects, Down-Regulation, Glycoproteins, Granulocyte-Macrophage Colony-Stimulating Factor, Humans, Interleukin-4, Lymphoproliferative Disorders, Monocytes, pathology

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CAMPATH antibodies recognize CD52, a phosphatidylinositol-linked membrane protein expressed by mature lymphocytes and monocytes. Since some antigen-presenting dendritic cells (DCs) differentiate from a monocytic progenitor, we investigated the expression of CD52 on dendritic cell subsets. Four-color staining for lineage markers (CD3, 14, 16, 19, 20, 34, and 56), HLA-DR, CD52, and CD123 or CD11c demonstrated that myeloid peripheral blood (PB) DCs, defined as lineage(-)HLA-DR(+)CD11c(+), express CD52, while expression by CD123(+) lymphoid DCs was variable. Depletion of CD52(+) cells from normal PB strongly inhibited their stimulatory activity in an allogeneic mixed lymphocyte reaction and also reduced the primary autologous response to the potent neoantigen keyhole limpet hemocyanin. CD52 is thus expressed by a myeloid subset of PBDCs that is strongly allostimulatory and capable of initiating a primary immune response to soluble antigen. Administration of alemtuzumab, a humanized monoclonal antibody against CD52, to patients with lymphoproliferative disorders or as conditioning for hematopoietic stem cell transplantation resulted in a marked reduction in circulating lineage(-)HLA-DR(+) DCs (mean 31-fold reduction, P =.043). Analysis of monocyte-derived DCs in vitro revealed a reduction in CD52 expression during culture in granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4, with complete loss following activation-induced maturation with lipopolysaccharide. In contrast to the findings in PB, epidermal and small-intestine DCs did not express CD52, suggesting either that transit from blood to epidermis and gut is associated with loss of CD52 or that DCs in these tissues originate from another population of cells.

          Related collections

          Author and article information

          Comments

          Comment on this article