5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Perspectives on Augmented Reality in Medical Education: Applications, Affordances and Limitations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This systematic review has been developed against a background of rapid developments in augmented reality (AR) technology and its application in medical education. The objectives are to provide a critical synthesis of current trends in the field and to highlight areas for further research. The data sources used for the study were the PubMed, Web of Science and Discover databases. Sources included in the study comprised peer reviewed journal articles published between 2015 and 2020. Inclusion criteria included empirical research findings related to learning outcomes and the populations for the selected studies were medical students. Studies were appraised in terms of to what extent the use of AR contributed to learning gains in knowledge and/or skill. Twenty-one studies were included in the analysis, and the dates of these suggested an increasing trend of publications in this area. The uses of AR in each selected study were analyzed through a lens of affordance, to identify which specific affordances of AR appear to be most effective in this domain. Results of the study indicated that AR seems to be more effective in supporting skill development rather than knowledge gain when compared to other techniques. Some key affordances of AR in medical education are identified as developing practical skills in a spatial context, device portability across locations and situated learning in context. It is suggested that a focus on relevant affordances when designing AR systems for medical education may lead to better learning outcomes. It is noted that the majority of AR systems reported in the selected studies are concentrated in the areas of anatomy and surgery, but that are also other areas of practice being explored, and these may provide opportunities for new types of AR learning systems to be developed for medical education.

          Video abstract

          Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use:

          https://youtu.be/kdb0iBF3vnA

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rayyan—a web and mobile app for systematic reviews

          Background Synthesis of multiple randomized controlled trials (RCTs) in a systematic review can summarize the effects of individual outcomes and provide numerical answers about the effectiveness of interventions. Filtering of searches is time consuming, and no single method fulfills the principal requirements of speed with accuracy. Automation of systematic reviews is driven by a necessity to expedite the availability of current best evidence for policy and clinical decision-making. We developed Rayyan (http://rayyan.qcri.org), a free web and mobile app, that helps expedite the initial screening of abstracts and titles using a process of semi-automation while incorporating a high level of usability. For the beta testing phase, we used two published Cochrane reviews in which included studies had been selected manually. Their searches, with 1030 records and 273 records, were uploaded to Rayyan. Different features of Rayyan were tested using these two reviews. We also conducted a survey of Rayyan’s users and collected feedback through a built-in feature. Results Pilot testing of Rayyan focused on usability, accuracy against manual methods, and the added value of the prediction feature. The “taster” review (273 records) allowed a quick overview of Rayyan for early comments on usability. The second review (1030 records) required several iterations to identify the previously identified 11 trials. The “suggestions” and “hints,” based on the “prediction model,” appeared as testing progressed beyond five included studies. Post rollout user experiences and a reflexive response by the developers enabled real-time modifications and improvements. The survey respondents reported 40% average time savings when using Rayyan compared to others tools, with 34% of the respondents reporting more than 50% time savings. In addition, around 75% of the respondents mentioned that screening and labeling studies as well as collaborating on reviews to be the two most important features of Rayyan. As of November 2016, Rayyan users exceed 2000 from over 60 countries conducting hundreds of reviews totaling more than 1.6M citations. Feedback from users, obtained mostly through the app web site and a recent survey, has highlighted the ease in exploration of searches, the time saved, and simplicity in sharing and comparing include-exclude decisions. The strongest features of the app, identified and reported in user feedback, were its ability to help in screening and collaboration as well as the time savings it affords to users. Conclusions Rayyan is responsive and intuitive in use with significant potential to lighten the load of reviewers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Re-epithelialization and immune cell behaviour in an ex vivo human skin model

            A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effectiveness of virtual and augmented reality in health sciences and medical anatomy.

              Although cadavers constitute the gold standard for teaching anatomy to medical and health science students, there are substantial financial, ethical, and supervisory constraints on their use. In addition, although anatomy remains one of the fundamental areas of medical education, universities have decreased the hours allocated to teaching gross anatomy in favor of applied clinical work. The release of virtual (VR) and augmented reality (AR) devices allows learning to occur through hands-on immersive experiences. The aim of this research was to assess whether learning structural anatomy utilizing VR or AR is as effective as tablet-based (TB) applications, and whether these modes allowed enhanced student learning, engagement and performance. Participants (n = 59) were randomly allocated to one of the three learning modes: VR, AR, or TB and completed a lesson on skull anatomy, after which they completed an anatomical knowledge assessment. Student perceptions of each learning mode and any adverse effects experienced were recorded. No significant differences were found between mean assessment scores in VR, AR, or TB. During the lessons however, VR participants were more likely to exhibit adverse effects such as headaches (25% in VR P < 0.05), dizziness (40% in VR, P < 0.001), or blurred vision (35% in VR, P < 0.01). Both VR and AR are as valuable for teaching anatomy as tablet devices, but also promote intrinsic benefits such as increased learner immersion and engagement. These outcomes show great promise for the effective use of virtual and augmented reality as means to supplement lesson content in anatomical education. Anat Sci Educ 10: 549-559. © 2017 American Association of Anatomists.
                Bookmark

                Author and article information

                Journal
                Adv Med Educ Pract
                Adv Med Educ Pract
                amep
                amep
                Advances in Medical Education and Practice
                Dove
                1179-7258
                19 January 2021
                2021
                : 12
                : 77-91
                Affiliations
                [1 ]Postgraduate Studies, The Mind Lab , Auckland, New Zealand
                [2 ]School of Educational Studies and Leadership, University of Canterbury , Christchurch, New Zealand
                Author notes
                Correspondence: David Parsons The Mind Lab , 99 Khyber Pass Road, Grafton, Auckland1023, New ZealandTel +64 21 0610441 Email david@themindlab.ac.nz
                Author information
                http://orcid.org/0000-0002-9815-036X
                http://orcid.org/0000-0003-3844-7628
                Article
                249891
                10.2147/AMEP.S249891
                7826047
                33500677
                071b962f-c01a-4771-abc4-5bab2158616b
                © 2021 Parsons and MacCallum.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 18 November 2020
                : 31 December 2020
                Page count
                Figures: 1, Tables: 2, References: 44, Pages: 15
                Categories
                Review

                systematic review,literature review,empirical study,medical students,learning outcomes

                Comments

                Comment on this article