5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Analysis and measurement of serotonin

      1 , 1
      Biomedical Chromatography
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: not found
          • Article: not found

          Synthesis of serotonin by a second tryptophan hydroxylase isoform.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular, pharmacological and functional diversity of 5-HT receptors.

            Serotonin (5-hydroxytryptamine, 5-HT) is probably unique among the monoamines in that its effects are subserved by as many as 13 distinct heptahelical, G-protein-coupled receptors (GPCRs) and one (presumably a family of) ligand-gated ion channel(s). These receptors are divided into seven distinct classes (5-HT(1) to 5-HT(7)) largely on the basis of their structural and operational characteristics. Whilst this degree of physical diversity clearly underscores the physiological importance of serotonin, evidence for an even greater degree of operational diversity continues to emerge. The challenge for modern 5-HT research has therefore been to define more precisely the properties of the systems that make this incredible diversity possible. Much progress in this regard has been made during the last decade with the realisation that serotonin is possibly the least conservative monoamine transmitter and the cloning of its many receptors. Coupled with the actions of an extremely avid and efficient reuptake system, this array of receptor subtypes provides almost limitless signalling capabilities to the extent that one might even question the need for other transmitter systems. However, the complexity of the system appears endless, since posttranslational modifications, such as alternate splicing and RNA editing, increase the number of proteins, oligomerisation and heteromerisation increase the number of complexes, and multiple G-protein suggest receptor trafficking, allowing phenotypic switching and crosstalk within and possibly between receptor families. Whether all these possibilities are used in vivo under physiological or pathological conditions remains to be firmly established, but in essence, such variety will keep the 5-HT community busy for quite some time. Those who may have predicted that molecular biology would largely simplify the life of pharmacologists have missed the point for 5-HT research in particular and, most probably, for many other transmitters. This chapter is an attempt to summarise very briefly 5-HT receptor diversity. The reward for unravelling this complex array of serotonin receptor--effector systems may be substantial, the ultimate prize being the development of important new drugs in a range of disease areas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              X-ray structures and mechanism of the human serotonin transporter

              The serotonin transporter (SERT) terminates serotonergic signaling through the sodium and chloride dependent reuptake of neurotransmitter into presynaptic neurons. SERT is a target for antidepressant and psychostimulant drugs, which block reuptake and prolong neurotransmitter signaling. Here we report x-ray crystallographic structures of human SERT at 3.15 Å resolution bound to the antidepressants (S)-citalopram or paroxetine. Antidepressants lock SERT in an outward-open conformation by lodging in the central binding site, located between transmembrane helices 1, 3, 6, 8, and 10, directly blocking serotonin binding. We further identify the location of an allosteric site in the complex as residing at the periphery of the extracellular vestibule, interposed between extracellular loops 4 and 6 and TMs 1, 6, 10, and 11. Occupancy of the allosteric site sterically hinders ligand unbinding from the central site, providing an explanation for the action of (S)-citalopram as an allosteric ligand. These structures define the mechanism of antidepressant action in SERT and provide blueprints for future drug design.
                Bookmark

                Author and article information

                Journal
                Biomedical Chromatography
                Biomedical Chromatography
                Wiley
                02693879
                January 2018
                January 2018
                November 30 2017
                : 32
                : 1
                : e4135
                Affiliations
                [1 ]Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
                Article
                10.1002/bmc.4135
                0734aada-8dcf-4839-9808-b783e07d0d41
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article