28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Comprehensive Review on the Phytochemical Constituents and Pharmacological Activities of Pogostemon cablin Benth.: An Aromatic Medicinal Plant of Industrial Importance

      review-article
      , *
      Molecules
      MDPI
      Pogostemon cablin, biological activities, phytomedicine, essential oil

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pogostemon cablin Benth. (patchouli) is an important herb which possesses many therapeutic properties and is widely used in the fragrance industries. In traditional medicinal practices, it is used to treat colds, headaches, fever, nausea, vomiting, diarrhea, abdominal pain, insect and snake bites. In aromatherapy, patchouli oil is used to relieve depression, stress, calm nerves, control appetite and to improve sexual interest. Till now more than 140 compounds, including terpenoids, phytosterols, flavonoids, organic acids, lignins, alkaloids, glycosides, alcohols, aldehydes have been isolated and identified from patchouli. The main phytochemical compounds are patchouli alcohol, α-patchoulene, β-patchoulene, α-bulnesene, seychellene, norpatchoulenol, pogostone, eugenol and pogostol. Modern studies have revealed several biological activities such as antioxidant, analgesic, anti-inflammatory, antiplatelet, antithrombotic, aphrodisiac, antidepressant, antimutagenic, antiemetic, fibrinolytic and cytotoxic activities. However, some of the traditional uses need to be verified and may require standardizing and authenticating the bioactivity of purified compounds through scientific methods. The aim of the present review is to provide comprehensive knowledge on the phytochemistry and pharmacological activities of essential oil and different plant extracts of patchouli based on the available scientific literature. This information will provide a potential guide in exploring the use of main active compounds of patchouli in various medical fields.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Natural products in drug discovery.

          Natural products have been the single most productive source of leads for the development of drugs. Over a 100 new products are in clinical development, particularly as anti-cancer agents and anti-infectives. Application of molecular biological techniques is increasing the availability of novel compounds that can be conveniently produced in bacteria or yeasts, and combinatorial chemistry approaches are being based on natural product scaffolds to create screening libraries that closely resemble drug-like compounds. Various screening approaches are being developed to improve the ease with which natural products can be used in drug discovery campaigns, and data mining and virtual screening techniques are also being applied to databases of natural products. It is hoped that the more efficient and effective application of natural products will improve the drug discovery process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial activity of essential oils and other plant extracts.

            The antimicrobial activity of plant oils and extracts has been recognized for many years. However, few investigations have compared large numbers of oils and extracts using methods that are directly comparable. In the present study, 52 plant oils and extracts were investigated for activity against Acinetobacter baumanii, Aeromonas veronii biogroup sobria, Candida albicans, Enterococcus faecalis, Escherichia col, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serotype typhimurium, Serratia marcescens and Staphylococcus aureus, using an agar dilution method. Lemongrass, oregano and bay inhibited all organisms at concentrations of < or = 2.0% (v/v). Six oils did not inhibit any organisms at the highest concentration, which was 2.0% (v/v) oil for apricot kernel, evening primrose, macadamia, pumpkin, sage and sweet almond. Variable activity was recorded for the remaining oils. Twenty of the plant oils and extracts were investigated, using a broth microdilution method, for activity against C. albicans, Staph. aureus and E. coli. The lowest minimum inhibitory concentrations were 0.03% (v/v) thyme oil against C. albicans and E. coli and 0.008% (v/v) vetiver oil against Staph. aureus. These results support the notion that plant essential oils and extracts may have a role as pharmaceuticals and preservatives.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antioxidant activities and volatile constituents of various essential oils.

              Thirteen essential oils were examined for their antioxidant activity using three different assay systems. Jasmine, parsley seed, rose, and ylang-ylang oils inhibited hexanal oxidation by over 95% after 40 days at a level of 500 microg/mL in the aldehyde/carboxylic acid assay. Scavenging abilities of the oils for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical ranged from 39% for angelica seed oil to 90% for jasmine oil at a level of 200 microg/mL. The greatest inhibitory activity toward malonaldehyde (MA) formation from squalene upon UV-irradiation was obtained from parsley seed oil (inhibitory effect, 67%), followed by rose oil (46%), and celery seed oil (23%) at the level of 500 microg/mL. The main compounds of oils showing high antioxidant activity were limonene (composition, 74.6%) in celery seed, benzyl acetate (22.9%) in jasmine, alpha-pinene (33.7%) in juniper berry, myristicin (44%) in parsley seed, patchouli alcohol (28.8%) in patchouli, citronellol (34.2%) in rose, and germacrene (19.1%) in ylang-ylang.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                12 May 2015
                May 2015
                : 20
                : 5
                : 8521-8547
                Affiliations
                Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia; E-Mail: swamy.bio@ 123456gmail.com
                Author notes
                [†]

                These authors contributed equally to this work

                [* ]Author to whom correspondence should be addressed; E-Mail: umarani@ 123456upm.edu.my ; Tel.: +60-3-8947-4839; Fax: +60-3-8940-8445.
                Article
                molecules-20-08521
                10.3390/molecules20058521
                6272783
                25985355
                0750b34e-c50c-493a-bf0b-70c1889e1f80
                © 2015 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 March 2015
                : 22 April 2015
                Categories
                Review

                pogostemon cablin,biological activities,phytomedicine,essential oil

                Comments

                Comment on this article