6
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Current treatment in COVID-19 disease: a rapid review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The world has faced the most challenging pandemic of the modern era, that of severe acute respiratory syndrome coronavirus 2 infection, causing coronavirus disease and affecting over 35 million people globally. The wide range of clinical manifestations associated with this viral disease is thought to be related to the overexpression of inflammatory markers. Due to a dysregulated host response, the most severe form involves multi-organ failure and thromboembolic complications. Immunomodulatory therapies may help prevent its progression and anticoagulation has been shown to reduce the risk of thrombotic complications. As this is a new entity for the medical world, there are no known therapeutic options nor has the prevention of complications been established. Anti-inflammatory agents, antimicrobial therapy, and vitamin supplements are short of clear benefits, but there is limited data to review. Other agents, such as convalescent plasma, eculizumab, immunoglobulins, neutralizing IgG1 monoclonal antibodies, remdesivir, steroids, and tocilizumab, have shown a possible impact on inpatient length of stay and mortality rate. This review aims to assess the efficacy and safety of these available therapies in light of current evidence. We compare these treatment options based on their impact on symptom management, inpatient length of stay, and overall morbidity and mortality.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Novel Coronavirus from Patients with Pneumonia in China, 2019

            Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

              Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
                Bookmark

                Author and article information

                Journal
                Drugs Context
                Drugs Context
                DIC
                Drugs in Context
                BioExcel Publishing Ltd
                1745-1981
                1740-4398
                2021
                29 January 2021
                : 10
                : 2020-10-3
                Affiliations
                [1 ]Department of Internal Medicine, BronxCare Hospital Center, Bronx, NY, USA
                [2 ]Division of Cardiology, BronxCare Hospital Center, Bronx, NY, USA
                Author notes
                Correspondence: Timothy J Vittorio, BronxCare Hospital Center, Department of Medicine/Division of Cardiology, 1650 Grand Concourse, 12th Floor, Bronx, NY 10457, USA. tjvittorio@ 123456gmail.com
                Article
                dic-2020-10-3
                10.7573/dic.2020-10-3
                7850293
                33569082
                0752cb1f-d644-4290-b570-37411be21f53
                Copyright © 2021 Rodriguez-Guerra M, Jadhav P, Vittorio TJ

                Published by Drugs in Context under Creative Commons License Deed CC BY NC ND 4.0 which allows anyone to copy, distribute, and transmit the article provided it is properly attributed in the manner specified below. No commercial use without permission.

                History
                : 12 October 2020
                : 11 December 2020
                Categories
                Review

                convalescent plasma,covid-19,eculizumab,immunoglobulins,neutralizing igg1 monoclonal antibodies,remdesivir,sars-cov-2,steroids,tocilizumab

                Comments

                Comment on this article