17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prognostic value of microRNAs in gastric cancer: a meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Previous articles have reported that expression levels of microRNAs (miRNAs) are associated with survival time of patients with gastric cancer (GC). A systematic review and meta-analysis was performed to study the outcome of it.

          Design

          Meta-analysis.

          Methods

          English studies estimating expression levels of miRNAs with any of survival curves in GC were identified up till March 19, 2017 through performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two authors independently. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS).

          Results

          Sixty-nine relevant articles about 26 miRNAs with 6148 patients were ultimately included. GC patients with high expression of miR-20b (HR=2.38, 95%CI=1.16-4.87), 21 (HR=1.77, 95%CI=1.01-3.08), 106b (HR=1.84, 95%CI=1.15-2.94), 196a (HR=2.66, 95%CI=1.94-3.63), 196b (HR=1.67, 95%CI=1.38-2.02), 214 (HR=1.84, 95%CI=1.27-2.67) or low expression of miR-125a (HR=2.06, 95%CI=1.26-3.37), 137 (HR=3.21, 95%CI=1.68-6.13), 141 (HR=2.47, 95%CI=1.34-4.56), 145 (HR=1.62, 95%CI=1.07-2.46), 146a (HR=2.60, 95%CI=1.63-4.13), 206 (HR=2.85, 95%CI=1.73-4.70), 218 (HR=2.61, 95%CI=1.74-3.92), 451 (HR=1.73, 95%CI=1.19-2.52), 486-5p (HR=2.45, 95%CI=1.65-3.65), 506 (HR=2.07, 95%CI=1.33-3.23) have significantly poor OS (P<0.05).

          Conclusions

          In summary, miR-20b, 21, 106b, 125a, 137, 141, 145, 146a, 196a, 196b, 206, 214, 218, 451, 486-5p and 506 demonstrate significantly prognostic value. Among them, miR-20b, 125a, 137, 141, 146a, 196a, 206, 218, 486-5p and 506 are strong biomarkers of prognosis in GC.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a

          Long noncoding RNAs are involved in diseases including cancer. Here, we reported that ANRIL (CDKN2B-AS1), a 3.8-kb long noncoding RNA, recruiting and binding to PRC2, was generally upregulated in human gastric cancer (GC) tissues. In a cohort of 120 GC patients, the higher expression of ANRIL was significantly correlated with a higher TNM stage (P=0.041) and tumor size (P=0.001). Multivariate analyses revealed that ANRIL expression served as an independent predictor for overall survival (P=0.036). Further experiments revealed that ANRIL knockdown significantly repressed the proliferation both in vitro and in vivo. We also showed that E2F1 could induce ANRIL and ANRIL-mediated growth promotion is in part due to epigenetic repression of miR-99a/miR-449a in Trans (controlling the targets—mTOR and CDK6/E2F1 pathway) by binding to PRC2, thus forming a positive feedback loop, continuing to promote GC cell proliferation. To our knowledge, this is the first report showed that the role of ANRIL in the progression of GC and ANRIL could crosstalk with microRNAs in epigenetic level. Our results suggest that ANRIL, as a growth regulator, may serve as a candidate prognostic biomarker and target for new therapies in human gastric cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3.

            Traditional research modes aim to find cancer-specific single therapeutic target. Recently, emerging evidence suggested that some micro-RNAs (miRNA) can function as oncogenes or tumor suppressors. miRNAs are single-stranded, small noncoding RNA genes that can regulate hundreds of downstream target genes. In this study, we evaluated the miRNA expression patterns in gastric carcinoma and the specific role of miR-223 in gastric cancer metastasis. miRNA expression signature was first analyzed by real-time PCR on 10 paired gastric carcinomas and confirmed in another 20 paired gastric carcinoma tissues. With the 2-fold expression difference as a cutoff level, we identified 22 differential expressed mature miRNAs. Sixteen miRNAs were upregulated in gastric carcinoma, including miR-223, miR-21, miR-23b, miR-222, miR-25, miR-23a, miR-221, miR-107, miR-103, miR-99a, miR-100, miR-125b, miR-92, miR-146a, miR-214 and miR-191, and six miRNAs were downregulated in gastric carcinoma, including let-7a, miR-126, miR-210, miR-181b, miR-197, and miR-30aa-5p. After examining these miRNAs in several human gastric originated cell lines, we found that miR-223 is overexpressed only in metastatic gastric cancer cells and stimulated nonmetastatic gastric cancer cells migration and invasion. Mechanistically, miR-223, induced by the transcription factor Twist, posttranscriptionally downregulates EPB41L3 expression by directly targeting its 3'-untranslated regions. Significantly, overexpression of miR-223 in primary gastric carcinomas is associated with poor metastasis-free survival. These findings indicate a new regulatory mode, namely, specific miRNA, which is activated by its upstream transcription factor, could suppress its direct targets and lead to tumor invasion and metastasis. ©2011 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer.

              It is increasingly evident that long noncoding RNAs (lncRNA) have causative roles in carcinogenesis. In this study, we report findings implicating a novel lncRNA in gastric cancer, termed GAPLINC (gastric adenocarcinoma predictive long intergenic noncoding RNA), based on the use of global microarray and in situ hybridization (ISH) analyses to identify aberrantly expressed lncRNA in human gastric cancer specimens. GAPLINC is a 924-bp-long lncRNA that is highly expressed in gastric cancer tissues. GAPLINC suppression and with gene expression profiling in gastric cancer cells revealed alterations in cell migration pathways, with CD44 expression the most highly correlated. Manipulating GAPLINC expression altered CD44 mRNA abundance and the effects of GAPLINC on cell migration and proliferation were neutralized by suppressing CD44 expression. Mechanistic investigations revealed that GAPLINC regulates CD44 as a molecular decoy for miR211-3p, a microRNA that targets both CD44 and GAPLINC. Tissue ISH analysis suggested that GAPLINC overexpression defines a subgroup of patients with gastric cancer with very poor survival. Taken together, our results identify a noncoding regulatory pathway for the CD44 oncogene, shedding new light on the basis for gastric cancer cell invasiveness. ©2014 American Association for Cancer Research.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                15 August 2017
                21 June 2017
                : 8
                : 33
                : 55489-55510
                Affiliations
                1 First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, People's Republic of China
                2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
                3 Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
                4 Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
                Author notes
                Correspondence to: Yue-Hua Jiang, jiang_yuehua@ 123456hotmail.com
                Article
                18590
                10.18632/oncotarget.18590
                5589675
                28903436
                077654ec-d853-415f-8920-10bc32fde798
                Copyright: © 2017 Zhang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 March 2017
                : 8 May 2017
                Categories
                Meta-Analysis

                Oncology & Radiotherapy
                microrna,gastric cancer,prognosis,meta-analysis
                Oncology & Radiotherapy
                microrna, gastric cancer, prognosis, meta-analysis

                Comments

                Comment on this article