35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trapped two-dimensional condensates with synthetic spin-orbit coupling

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study trapped 2D atomic Bose-Einstein condensates with spin-independent interactions in the presence of an isotropic spin-orbit coupling, showing that a rich physics results from the non-trivial interplay between spin-orbit coupling, confinement and inter-atomic interactions. For low interactions two types of half-vortex solutions with different winding occur, whereas strong-enough repulsive interactions result in a stripe-phase similar to that predicted for homogeneous condensates. Intermediate interaction regimes are characterized for large enough spin-orbit coupling by an hexagonally-symmetric phase with a triangular lattice of density minima similar to that observed in rapidly rotating condensates.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Topological Insulators

          , (2011)
          Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting states on their edge or surface. The 2D topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In this Colloquium article we will review the theoretical foundation for these electronic states and describe recent experiments in which their signatures have been observed. We will describe transport experiments on HgCdTe quantum wells that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. We will then discuss experiments on Bi_{1-x}Sb_x, Bi_2 Se_3, Bi_2 Te_3 and Sb_2 Te_3 that establish these materials as 3D topological insulators and directly probe the topology of their surface states. We will then describe exotic states that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions, and may provide a new venue for realizing proposals for topological quantum computation. We will close by discussing prospects for observing these exotic states, a well as other potential device applications of topological insulators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Spin-Orbit Coupled Spinor Bose-Einstein Condensates

            An effective spin-orbit coupling can be generated in cold atom system by engineering atom-light interactions. In this letter we study spin-1/2 and spin-1 Bose-Einstein condensates with Rashba spin-orbit coupling, and find that the condensate wave function will develop non-trivial structures. From numerical simulation we have identified two different phases. In one phase the ground state is a single plane wave, and often we find the system splits into domains and an array of vortices plays the role as domain wall. In this phase, time-reversal symmetry is broken. In the other phase the condensate wave function is a standing wave and it forms spin stripe. The transition between them is driven by interactions between bosons. We also provide an analytical understanding of these results and determines the transition point between the two phases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Spin-orbit coupled Bose-Einstein condensates

              We consider a many-body system of pseudo-spin-1/2 bosons with spin-orbit interactions, which couple the momentum and the internal pseudo-spin degree of freedom created by spatially varying laser fields. The corresponding single- particle spectrum is generally anisotropic and contains two degenerate minima at finite momenta. At low temperatures, the many-body system condenses into these minima generating a new type of entangled Bose-Einstein condensate. We show that in the presence of weak density-density interactions the many-body ground state is characterized by a twofold degeneracy. The corresponding many-body wave function describes a condensate of ``left-'' and ``right-moving'' bosons. By fine-tuning the parameters of the laser field, one can obtain a bosonic version of the spin-orbit coupled Rashba model. In this symmetric case, the degeneracy of the ground state is very large, which may lead to phases with nontrivial topological properties. We argue that the predicted new type of Bose-Einstein condensates can be observed experimentally via time-of-flight imaging, which will show characteristic multipeak structures in momentum distribution.
                Bookmark

                Author and article information

                Journal
                09 September 2011
                2011-09-14
                Article
                10.1103/PhysRevLett.107.270401
                1109.2045
                07d5fe81-6eb4-4f2f-90f4-d28aeeaa6620

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                4 pages, 3 figures,reduced the resolution of figure 1 from previous submission
                cond-mat.quant-gas cond-mat.other

                Comments

                Comment on this article