3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroimaging anomalies in asymptomatic middle cerebral artery steno-occlusive disease with normal-appearing white matter

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Asymptomatic chronic cerebrovascular steno-occlusive disease is common, but the cognitive function and alterations in the brain’s structural and functional profiles have not been well studied. This study aimed to reveal whether and how patients with asymptomatic middle cerebral artery (MCA) steno-occlusive disease and normal-appearing white matter differ in brain structural and functional profiles from normal controls and their correlations with cognitive function.

          Methods

          In all, 26 patients with asymptomatic MCA steno-occlusive disease and 22 healthy controls were compared for neurobehavioral assessments, brain volume, cortical thickness, fiber connectivity density (FiCD) value, and resting-state functional connectivity (FC) using multimodal MRI. We also investigated the associations between abnormal cortical thicknesses, FiCD values, and functional connectivities with the neurobehavioral assessments.

          Results

          Patients performed worse on memory tasks (Auditory Verbal Learning Test-Huashan version) compared with healthy controls. Patients were divided into two groups: the right group (patients with right MCA steno-occlusive disease) and the left group (patients with left MCA steno-occlusive disease). The left group showed significant cortical thinning in the left superior parietal lobule, while the right group showed significant cortical thinning in the right superior parietal lobule and caudal portion of the right middle frontal gyrus. Increased FiCD values in the superior frontal region of the left hemisphere were observed in the left group. In addition, a set of interhemispheric and intrahemispheric FC showed a significant decrease or increase in both the left and right groups. Many functional connectivity profiles were positively correlated with cognitive scores. No correlation was found between cortical thickness, FiCD values, and cognitive scores.

          Conclusion

          Even if the patients with MCA steno-occlusive disease were asymptomatic and had normal-appearing white matter, their cognitive function and structural and functional profiles had changed, especially the FC. Alterations in FC may be an important mechanism underlying the neurodegenerative process in patients with asymptomatic MCA steno-occlusive disease before structural changes occur, so FC assessment may promote the detection of network alterations, which may be used as a biomarker of disease progression and therapeutic efficacy evaluation in these patients.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          FSL.

          FSL (the FMRIB Software Library) is a comprehensive library of analysis tools for functional, structural and diffusion MRI brain imaging data, written mainly by members of the Analysis Group, FMRIB, Oxford. For this NeuroImage special issue on "20 years of fMRI" we have been asked to write about the history, developments and current status of FSL. We also include some descriptions of parts of FSL that are not well covered in the existing literature. We hope that some of this content might be of interest to users of FSL, and also maybe to new research groups considering creating, releasing and supporting new software packages for brain image analysis. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FreeSurfer.

            FreeSurfer is a suite of tools for the analysis of neuroimaging data that provides an array of algorithms to quantify the functional, connectional and structural properties of the human brain. It has evolved from a package primarily aimed at generating surface representations of the cerebral cortex into one that automatically creates models of most macroscopically visible structures in the human brain given any reasonable T1-weighted input image. It is freely available, runs on a wide variety of hardware and software platforms, and is open source. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortical surface-based analysis. I. Segmentation and surface reconstruction.

              Several properties of the cerebral cortex, including its columnar and laminar organization, as well as the topographic organization of cortical areas, can only be properly understood in the context of the intrinsic two-dimensional structure of the cortical surface. In order to study such cortical properties in humans, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Here we describe a set of automated procedures for obtaining accurate reconstructions of the cortical surface, which have been applied to data from more than 100 subjects, requiring little or no manual intervention. Automated routines for unfolding and flattening the cortical surface are described in a companion paper. These procedures allow for the routine use of cortical surface-based analysis and visualization methods in functional brain imaging. Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                24 August 2023
                2023
                : 14
                : 1206786
                Affiliations
                [1] 1Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University , Qingdao, China
                [2] 2State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing, China
                [3] 3BrainNow Research Institute , Shenzhen, Guangdong, China
                [4] 4Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
                [5] 5GE Healthcare, Precision Health Institution , Shanghai, China
                Author notes

                Edited by: Govind Nair, National Institutes of Health (NIH), United States

                Reviewed by: Lei Gao, Wuhan University, China; Jianghai Ruan, The Affiliated Hospital of Southwest Medical University, China

                *Correspondence: Xiangshui Meng, xiangshuimeng@ 123456163.com

                These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fneur.2023.1206786
                10484479
                37693758
                07dec1f4-44d8-4e20-8aeb-178202032ba3
                Copyright © 2023 Huang, Xia, Guan, Gong, Luo, Shi, Zhang and Meng.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 May 2023
                : 31 July 2023
                Page count
                Figures: 5, Tables: 4, Equations: 0, References: 46, Pages: 10, Words: 7083
                Categories
                Neurology
                Original Research
                Custom metadata
                Applied Neuroimaging

                Neurology
                cortical thickness,diffusion tensor imaging,functional connectivity,functional magnetic resonance imaging,middle cerebral artery

                Comments

                Comment on this article