1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure Based Virtual Screening Studies to Identify Novel Potential Compounds for GPR142 and Their Relative Dynamic Analysis for Study of Type 2 Diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          GPR142 (G protein receptor 142) is a novel orphan GPCR (G protein coupled receptor) belonging to “Class A” of GPCR family and expressed in β cells of pancreas. In this study, we reported the structure based virtual screening to identify the hit compounds which can be developed as leads for potential agonists. The results were validated through induced fit docking, pharmacophore modeling, and system biology approaches. Since, there is no solved crystal structure of GPR142, we attempted to predict the 3D structure followed by validation and then identification of active site using threading and ab initio methods. Also, structure based virtual screening was performed against a total of 1171519 compounds from different libraries and only top 20 best hit compounds were screened and analyzed. Moreover, the biochemical pathway of GPR142 complex with screened compound2 was also designed and compared with experimental data. Interestingly, compound2 showed an increase in insulin production via Gq mediated signaling pathway suggesting the possible role of novel GPR142 agonists in therapy against type 2 diabetes.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Epik: a software program for pK( a ) prediction and protonation state generation for drug-like molecules.

          Epik is a computer program for predicting pK(a) values for drug-like molecules. Epik can use this capability in combination with technology for tautomerization to adjust the protonation state of small drug-like molecules to automatically generate one or more of the most probable forms for use in further molecular modeling studies. Many medicinal chemicals can exchange protons with their environment, resulting in various ionization and tautomeric states, collectively known as protonation states. The protonation state of a drug can affect its solubility and membrane permeability. In modeling, the protonation state of a ligand will also affect which conformations are predicted for the molecule, as well as predictions for binding modes and ligand affinities based upon protein-ligand interactions. Despite the importance of the protonation state, many databases of candidate molecules used in drug development do not store reliable information on the most probable protonation states. Epik is sufficiently rapid and accurate to process large databases of drug-like molecules to provide this information. Several new technologies are employed. Extensions to the well-established Hammett and Taft approaches are used for pK(a) prediction, namely, mesomer standardization, charge cancellation, and charge spreading to make the predicted results reflect the nature of the molecule itself rather just for the particular Lewis structure used on input. In addition, a new iterative technology for generating, ranking and culling the generated protonation states is employed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The KEGG databases at GenomeNet.

            The Kyoto Encyclopedia of Genes and Genomes (KEGG) is the primary database resource of the Japanese GenomeNet service (http://www.genome.ad.jp/) for understanding higher order functional meanings and utilities of the cell or the organism from its genome information. KEGG consists of the PATHWAY database for the computerized knowledge on molecular interaction networks such as pathways and complexes, the GENES database for the information about genes and proteins generated by genome sequencing projects, and the LIGAND database for the information about chemical compounds and chemical reactions that are relevant to cellular processes. In addition to these three main databases, limited amounts of experimental data for microarray gene expression profiles and yeast two-hybrid systems are stored in the EXPRESSION and BRITE databases, respectively. Furthermore, a new database, named SSDB, is available for exploring the universe of all protein coding genes in the complete genomes and for identifying functional links and ortholog groups. The data objects in the KEGG databases are all represented as graphs and various computational methods are developed to detect graph features that can be related to biological functions. For example, the correlated clusters are graph similarities which can be used to predict a set of genes coding for a pathway or a complex, as summarized in the ortholog group tables, and the cliques in the SSDB graph are used to annotate genes. The KEGG databases are updated daily and made freely available (http://www.genome.ad.jp/kegg/).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.

              The accurate prediction of protein-ligand binding free energies is a primary objective in computer-aided drug design. The solvation free energy of a small molecule provides a surrogate to the desolvation of the ligand in the thermodynamic process of protein-ligand binding. Here, we use explicit solvent molecular dynamics free energy perturbation to predict the absolute solvation free energies of a set of 239 small molecules, spanning diverse chemical functional groups commonly found in drugs and drug-like molecules. We also compare the performance of absolute solvation free energies obtained using the OPLS_2005 force field with two other commonly used small molecule force fields-general AMBER force field (GAFF) with AM1-BCC charges and CHARMm-MSI with CHelpG charges. Using the OPLS_2005 force field, we obtain high correlation with experimental solvation free energies (R(2) = 0.94) and low average unsigned errors for a majority of the functional groups compared to AM1-BCC/GAFF or CHelpG/CHARMm-MSI. However, OPLS_2005 has errors of over 1.3 kcal/mol for certain classes of polar compounds. We show that predictions on these compound classes can be improved by using a semiempirical charge assignment method with an implicit bond charge correction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Chem
                Front Chem
                Front. Chem.
                Frontiers in Chemistry
                Frontiers Media S.A.
                2296-2646
                14 February 2018
                2018
                : 6
                : 23
                Affiliations
                [1] 1State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai, China
                [2] 2School of Biotechnology, Gautam Buddha University , Greater Noida, India
                [3] 3Molecular Structural Biology Division, CSIR-Central Drug Research Institute Lucknow , Lucknow, India
                Author notes

                Edited by: Yong Wang, Lanzhou Institute of Chemical Physics (CAS), China

                Reviewed by: Qing-Chuan Zheng, Jilin University, China; Sixue Zhang, Southern Research Institute, United States; Wei Li, Nanjing University, China

                *Correspondence: Dong Q. Wei dqwei@ 123456stju.edu.in

                This article was submitted to Theoretical and Computational Chemistry, a section of the journal Frontiers in Chemistry

                Article
                10.3389/fchem.2018.00023
                5817085
                29492402
                0812aef2-e852-4653-909f-d6e56b82d1cf
                Copyright © 2018 Kaushik, Kumar, Wei and Sahi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 November 2017
                : 29 January 2018
                Page count
                Figures: 10, Tables: 5, Equations: 1, References: 73, Pages: 14, Words: 8973
                Funding
                Funded by: Chinese Ministry of Science and Technology 10.13039/501100002855
                Award ID: 2016YFA0501703
                Categories
                Chemistry
                Original Research

                gpr142,virtual screening,pharmacophore hypothesis,vsw,ifd,systems biology,md simulation,type 2 diabetes mellitus (t2dm)

                Comments

                Comment on this article