31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Severe learning deficits of IRSp53 mutant mice are caused by altered NMDA receptor-dependent signal transduction

      1 , 1
      Journal of Neurochemistry
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Learning and memory is dependent on postsynaptic architecture and signaling processes in forebrain regions. The insulin receptor substrate protein of 53 kDa (IRSp53, also known as Baiap2) is a signaling and adapter protein in forebrain excitatory synapses. Mice deficient in IRSp53 display enhanced levels of postsynaptic N-methyl-D-aspartate receptors (NMDARs) and long-term potentiation (LTP) associated with severe learning deficits. In humans, reduced IRSp53/Baiap2 expression is associated with a variety of neurological disorders including autism, schizophrenia, and Alzheimer's disease. Here, we analyzed mice lacking one copy of the gene coding for IRSp53 using behavioral tests including contextual fear conditioning and the puzzle box. We show that a 50% reduction in IRSp53 levels strongly affects the performance in fear-evoking learning paradigms. This correlates with increased targeting of NMDARs to the postsynaptic density (PSD) in hippocampi of both heterozygous and knock out (ko) mice at the expense of extrasynaptic NMDARs. As hippocampal NMDAR-dependent LTP is enhanced in IRSp53-deficient mice, we investigated signaling cascades important for the formation of fear-evoked memories. Here, we observed a dramatic increase in cAMP response element-binding protein-dependent signaling in heterozygous and IRSp53-deficient mice, necessary for the transcriptional dependent phase of LTP. In contrast, activation of the MAPK and Akt kinase pathways required for translation-dependent phase of LTP are reduced. Our data suggest that loss or even the reduction in IRSp53 increases NMDAR-dependent cAMP responsive element-binding protein activation in the hippocampus, and interferes with the ability of mice to learn upon anxiety-related stimuli. We show here that a moderate reduction in the postsynaptic protein IRSp53 in mice leads to an increase in postsynaptic NMDA receptors. Both in heterozygous and IRSp53 deficient mice, this is associated with altered postsynaptic signal transduction, and poor performance of mice in fear-associated learning paradigms, indicating that precise control of postsynaptic NMDA receptor density is essential for memory formation.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Translational control by MAPK signaling in long-term synaptic plasticity and memory.

          Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum.

            The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95

              The N-methyl-D-aspartate (NMDA) receptor subserves synaptic glutamate-induced transmission and plasticity in central neurons. The yeast two-hybrid system was used to show that the cytoplasmic tails of NMDA receptor subunits interact with a prominent postsynaptic density protein PSD-95. The second PDZ domain in PSD-95 binds to the seven-amino acid, COOH-terminal domain containing the terminal tSXV motif (where S is serine, X is any amino acid, and V is valine) common to NR2 subunits and certain NR1 splice forms. Transcripts encoding PSD-95 are expressed in a pattern similar to that of NMDA receptors, and the NR2B subunit co-localizes with PSD-95 in cultured rat hippocampal neurons. The interaction of these proteins may affect the plasticity of excitatory synapses.
                Bookmark

                Author and article information

                Journal
                Journal of Neurochemistry
                J. Neurochem.
                Wiley
                00223042
                February 2016
                February 2016
                November 30 2015
                : 136
                : 4
                : 752-763
                Affiliations
                [1 ]Institut für Humangenetik; Universitätsklinikum Hamburg-Eppendorf; Hamburg Germany
                Article
                10.1111/jnc.13428
                26560964
                081b5d30-3507-47df-a9b3-e631d3c18edb
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article