5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The relationship between chemokines CCL2, CCL3, and CCL4 with the tumor microenvironment and tumor-associated macrophage markers in colorectal cancer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression.

          Inflammation is now acknowledged as an hallmark of cancer. Cancer-associated fibroblasts (CAFs) force a malignant cross talk with cancer cells, culminating in their epithelial-mesenchymal transition and achievement of stemness traits. Herein, we demonstrate that stromal tumor-associated cells cooperate to favor malignancy of prostate carcinoma (PCa). Indeed, prostate CAFs are active factors of monocyte recruitment toward tumor cells, mainly acting through stromal-derived growth factor-1 delivery and promote their trans-differentiation toward the M2 macrophage phenotype. The relationship between M2 macrophages and CAFs is reciprocal, as M2 macrophages are able to affect mesenchymal-mesenchymal transition of fibroblasts, leading to their enhanced reactivity. On the other side, PCa cells themselves participate in this cross talk through secretion of monocyte chemotactic protein-1, facilitating monocyte recruitment and again macrophage differentiation and M2 polarization. Finally, this complex interplay among cancer cells, CAFs and M2 macrophages, cooperates in increasing tumor cell motility, ultimately fostering cancer cells escaping from primary tumor and metastatic spread, as well as in activation of endothelial cells and their bone marrow-derived precursors to drive de novo angiogenesis. In keeping with our data obtained in vitro, the analysis of patients affected by prostate cancers at different clinical stages revealed a clear increase in the M2/M1 ratio in correlation with clinical values. These data, coupled with the role of CAFs in carcinoma malignancy to elicit expression of stem-like traits, should focus great interest for innovative strategies aimed at the co-targeting of inflammatory cells and fibroblasts to improve therapeutic efficacy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization.

            CCL2 and interleukin (IL)-6 are among the most prevalent cytokines in the tumor microenvironment, with expression generally correlating with tumor progression and metastasis. CCL2 and IL-6 induced expression of each other in CD11b(+) cells isolated from human peripheral blood. It was demonstrated that both cytokines induce up-regulation of the antiapoptotic proteins cFLIP(L) (cellular caspase-8 (FLICE)-like inhibitory protein), Bcl-2, and Bcl-X(L) and inhibit the cleavage of caspase-8 and subsequent activation of the caspase-cascade, thus protecting cells from apoptosis under serum deprivation stress. Furthermore, both cytokines induced hyperactivation of autophagy in these cells. Upon CCL2 or IL-6 stimulation, CD11b(+) cells demonstrated a significant increase in the mannose receptor (CD206) and the CD14(+)/CD206(+) double-positive cells, suggesting a polarization of macrophages toward the CD206(+) M2-type phenotype. Caspase-8 inhibitors mimicked the cytokine-induced up-regulation of autophagy and M2 polarization. Furthermore, E64D and leupeptin, which are able to function as inhibitors of autophagic degradation, reversed the effect of caspase-8 inhibitors in the M2-macrophage polarization, indicating a role of autophagy in this mechanism. Additionally, in patients with advanced castrate-resistant prostate cancer, metastatic lesions exhibited an increased CD14(+)/CD206(+) double-positive cell population compared with normal tissues. Altogether, these findings suggest a role for CCL2 and IL-6 in the survival of myeloid monocytes recruited to the tumor microenvironment and their differentiation toward tumor-promoting M2-type macrophages via inhibition of caspase-8 cleavage and enhanced autophagy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli.

              CD163, also referred to as M130, a member of the scavenger receptor cysteine-rich family (SRCR) is exclusively expressed on cells of the monocyte lineage. In freshly isolated monocytes the CD14bright CD16+ monocyte subset revealed the highest expression of CD163 among all monocyte subsets. CD163 mRNA and protein expression is up-regulated during macrophage colony-stimulating factor (M-CSF)-dependent phagocytic differentiation of human blood monocytes. In contrast, monocytic cells treated with GM-CSF and interleukin-4 (IL-4) for dendritic differentiation down-regulate this antigen. CD163 expression is also suppressed by proinflammatory mediators like lipopolysaccharide (LPS), interferon-gamma (IFN-gamma), and tumor necrosis factor alpha, whereas IL-6 and the antiinflammatory cytokine interleukin-10 (IL-10) strongly up-regulate CD163 mRNA in monocytes and macrophages. The effects of the immunosuppressants dexamethasone, cyclosporin A (CA), and cortisol differ in their capacity to influence CD163 mRNA levels. Our results demonstrate that CD163 expression in monocytes/macrophages is regulated by proinflammatory and antiinflammatory mediators. This expression pattern implies a functional role of CD 163 in the antiinflammatory response of monocytes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Tumor Biology
                Tumour Biol.
                SAGE Publications
                1010-4283
                1423-0380
                November 12 2018
                November 2018
                November 12 2018
                November 2018
                : 40
                : 11
                : 101042831881005
                Affiliations
                [1 ]Academic Research Unit, Clínica Las Condes, Santiago, Chile
                [2 ]Innate Immunity Laboratory, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
                [3 ]Department of Anatomic Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
                [4 ]Laboratory of Oncology and Molecular Genetics, Colorectal Surgery Unit, Clínica Las Condes, Santiago, Chile
                [5 ]Coloproctology Unit, Hospital Clínico Universidad de Chile, Santiago, Chile
                [6 ]Program of Cell Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
                [7 ]Gastroenterology Service, Clinica Las Condes, Santiago, Chile
                Article
                10.1177/1010428318810059
                30419802
                0824dd71-e78e-4221-9569-58c6da336b09
                © 2018

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article