24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metastatic breast cancers (mBCs) are largely resistant to immune checkpoint blockade, but the mechanisms remain unclear. Primary breast cancers are characterized by a dense fibrotic stroma, which is considered immunosuppressive in multiple malignancies, but the stromal composition of breast cancer metastases and its role in immunosuppression are largely unknown. Here we show that liver and lung metastases of human breast cancers tend to be highly fibrotic, and unlike primary breast tumors, they exclude cytotoxic T lymphocytes (CTLs). Unbiased analysis of the The Cancer Genome Atlas database of human breast tumors revealed a set of genes that are associated with stromal T-lymphocyte exclusion. Among these, we focused on CXCL12 as a relevant target based on its known roles in immunosuppression in other cancer types. We found that the CXCL12 receptor CXCR4 is highly expressed in both human primary tumors and metastases. To gain insight into the role of the CXCL12/CXCR4 axis, we inhibited CXCR4 signaling pharmacologically and found that plerixafor decreases fibrosis, alleviates solid stress, decompresses blood vessels, increases CTL infiltration, and decreases immunosuppression in murine mBC models. By deleting CXCR4 in αSMA + cells, we confirmed that these immunosuppressive effects are dependent on CXCR4 signaling in αSMA + cells, which include cancer-associated fibroblasts as well as other cells such as pericytes. Accordingly, CXCR4 inhibition more than doubles the response to immune checkpoint blockers in mice bearing mBCs. These findings demonstrate that CXCL12/CXCR4-mediated desmoplasia in mBC promotes immunosuppression and is a potential target for overcoming therapeutic resistance to immune checkpoint blockade in mBC patients.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers.

          For almost four decades, my work has focused on one challenge: improving the delivery and efficacy of anticancer therapeutics. Working on the hypothesis that the abnormal tumor microenvironment-characterized by hypoxia and high interstitial fluid pressure--fuels tumor progression and treatment resistance, we developed an array of sophisticated imaging technologies and animal models as well as mathematic models to unravel the complex biology of tumors. Using these tools, we demonstrated that the blood and lymphatic vasculature, fibroblasts, immune cells, and extracellular matrix associated with tumors are abnormal, which together create a hostile tumor microenvironment. We next hypothesized that agents that induce normalization of the microenvironment can improve treatment outcome. Indeed, we demonstrated that judicious use of antiangiogenic agents--originally designed to starve tumors--could transiently normalize tumor vasculature, alleviate hypoxia, increase delivery of drugs and antitumor immune cells, and improve the outcome of various therapies. Our trials of antiangiogenics in patients with newly diagnosed and recurrent glioblastoma supported this concept. They revealed that patients whose tumor blood perfusion increased in response to cediranib survived 6 to 9 months longer than those whose blood perfusion did not increase. The normalization hypothesis also opened doors to treating various nonmalignant diseases characterized by abnormal vasculature, such as neurofibromatosis type 2. More recently, we discovered that antifibrosis drugs capable of normalizing the tumor microenvironment can improve the delivery and efficacy of nano- and molecular medicines. Our current efforts are directed at identifying predictive biomarkers and more-effective strategies to normalize the tumor microenvironment for enhancing anticancer therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.

            Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Breast Cancer Immunotherapy: Facts and Hopes

              Immunotherapy is revolutionizing the management of multiple solid tumors, and early data have revealed the clinical activity of PD-1/PD-L1 antagonists in small numbers of metastatic breast cancer patients. Clinical activity appears more likely if the tumor is triple negative, PD-L1+, and/or harbors higher levels of TILs. Responses to atezolizumab and pembrolizumab appear to be durable in metastatic triple negative breast cancer (TNBC), suggesting these agents may transform the lives of responding patients. Current clinical efforts are focused on developing immunotherapy combinations that convert non-responders to responders, deepen those responses that do occur, and surmount acquired resistance to immunotherapy. Identifying biomarkers that can predict the potential for response to single agent immunotherapy, identify the best immunotherapy combinations for a particular patient, and guide salvage immunotherapy in patients with progressive disease are high priorities for clinical development. Smart clinical trials testing rational immunotherapy combinations that include robust biomarker evaluations will accelerate clinical progress, moving us closer to effective immunotherapy for almost all breast cancer patients.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                January 30 2019
                : 201815515
                Article
                10.1073/pnas.1815515116
                6410779
                30700545
                083cea61-cf8c-4310-888f-e20bf24b014a
                © 2019

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article