2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Testing regions with nonsmooth boundaries via multiscale bootstrap

       
      Journal of Statistical Planning and Inference
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea.

          A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly. The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Some Asymptotic Theory for the Bootstrap

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling

              Approximately unbiased tests based on bootstrap probabilities are considered for the exponential family of distributions with unknown expectation parameter vector, where the null hypothesis is represented as an arbitrary-shaped region with smooth boundaries. This problem has been discussed previously in Efron and Tibshirani [Ann. Statist. 26 (1998) 1687-1718], and a corrected p-value with second-order asymptotic accuracy is calculated by the two-level bootstrap of Efron, Halloran and Holmes [Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 13429-13434] based on the ABC bias correction of Efron [J. Amer. Statist. Assoc. 82 (1987) 171-185]. Our argument is an extension of their asymptotic theory, where the geometry, such as the signed distance and the curvature of the boundary, plays an important role. We give another calculation of the corrected p-value without finding the ``nearest point'' on the boundary to the observation, which is required in the two-level bootstrap and is an implementational burden in complicated problems. The key idea is to alter the sample size of the replicated dataset from that of the observed dataset. The frequency of the replicates falling in the region is counted for several sample sizes, and then the p-value is calculated by looking at the change in the frequencies along the changing sample sizes. This is the multiscale bootstrap of Shimodaira [Systematic Biology 51 (2002) 492-508], which is third-order accurate for the multivariate normal model. Here we introduce a newly devised multistep-multiscale bootstrap, calculating a third-order accurate p-value for the exponential family of distributions.
                Bookmark

                Author and article information

                Journal
                Journal of Statistical Planning and Inference
                Journal of Statistical Planning and Inference
                Elsevier BV
                03783758
                May 2008
                May 2008
                : 138
                : 5
                : 1227-1241
                Article
                10.1016/j.jspi.2007.04.001
                088c182b-d5e5-47e1-8476-ae3279d0262a
                © 2008

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article