13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role for peroxisome proliferator-activated receptor alpha in oxidized phospholipid-induced synthesis of monocyte chemotactic protein-1 and interleukin-8 by endothelial cells.

      Circulation Research
      Animals, Aorta, cytology, metabolism, Cell Line, Chemokine CCL2, biosynthesis, Endothelium, Vascular, Humans, Interleukin-8, Isoquinolines, pharmacology, Lipoproteins, LDL, Mice, Mice, Inbred C57BL, Monocytes, Oxidation-Reduction, Phospholipid Ethers, Phospholipids, RNA, Messenger, Receptors, Cytoplasmic and Nuclear, agonists, genetics, physiology, Response Elements, Reverse Transcriptase Polymerase Chain Reaction, Sulfonamides, Transcription Factors, Transfection

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The attraction, binding, and entry of monocytes into the vessel wall play an important role in atherogenesis. We have previously shown that minimally oxidized/modified LDL (MM-LDL), a pathogenically relevant lipoprotein, can activate human aortic endothelial cells (HAECs) to produce monocyte chemotactic activators. In the present study, we demonstrate that MM-LDL and oxidation products of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (PAPC) activate endothelial cells to synthesize monocyte chemotactic protein-1 (MCP-1) and interleukin-8 (IL-8). Several lines of evidence suggest that this activation is mediated by the lipid-dependent transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha), the most abundant member of the PPAR family in HAECs. Treatment of transfected CV-1 cells demonstrated activation of the PPARalpha ligand-binding domain by MM-LDL, Ox-PAPC, or its component phospholipids, 1-palmitoyl-2-oxovalaroyl-sn-glycero-phosphocholine and 1-palmitoyl-2-glutaroyl-sn-glycero-phosphocholine; these lipids also activated a consensus peroxisome proliferator-activated receptor response element (PPRE) in transfected HAECs. Furthermore, activation of PPARalpha with synthetic ligand Wy14,643 stimulates the synthesis of IL-8 and MCP-1 by HAECs. By contrast, troglitazone, a PPARgamma agonist, decreased the levels of IL-8 and MCP-1. Finally, we demonstrate that unlike wild-type endothelial cells, endothelial cells derived from PPARalpha null mice do not produce MCP-1/JE in response to Ox-PAPC and MM-LDL. Together, these data demonstrate a proinflammatory role for PPARalpha in mediation of the activation of endothelial cells to produce monocyte chemotactic activity in response to oxidized phospholipids and lipoproteins.

          Related collections

          Author and article information

          Comments

          Comment on this article