9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early Post-stroke Depression and Mortality: Meta-Analysis and Meta-Regression

      systematic-review

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Post-stroke depression (PSD) is a common and serious complication after stroke. In this systematic review and meta-analysis, we evaluated the association between early PSD and mortality, considering depressive symptoms occurring within the first 3 months after the neurological event.

          Methods: This meta-analysis was conducted following Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines and based on studies indexed till May 2018 in PubMed and Web of Science databases. The relative risk (RR) for mortality in individuals with PSD, as compared with non-depressed ones, was estimated. Findings were pooled according to a random-effects model. Meta-regression and subgroup analyses were carried out.

          Results: We included seven studies, accounting for 119,075 individuals, of whom 17,609 suffering from an early PSD. We found higher rates of mortality in subjects with PSD as compared with non-depressed ones (RR = 1.50; 95%CI: 1.28 to 1.75; p < 0.001). Heterogeneity across studies was moderate ( I 2 = 50.7%). Subgroup analysis showed a slightly higher effect of PSD on short-term mortality (RR = 1.70; p < 0.001), as compared with long-term one (RR = 1.35; p = 0.01). According to relevant meta-regression analyses, the estimate was influenced by sample proportion of men ( p = 0.043).

          Conclusions: Despite some limitations, our study shows the negative impact of early PSD on survival rates. Mechanisms underlying this association still need to be elucidated and several interpretations can be hypothesized. Future research should test if an early management of depression may increase life expectancy after stroke.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Measuring inconsistency in meta-analyses.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bias in meta-analysis detected by a simple, graphical test

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015

              Summary Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography–year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4–61·9) in 1980 to 71·8 years (71·5–72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7–17·4), to 62·6 years (56·5–70·2). Total deaths increased by 4·1% (2·6–5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8–18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6–16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9–14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1–44·6), malaria (43·1%, 34·7–51·8), neonatal preterm birth complications (29·8%, 24·8–34·9), and maternal disorders (29·1%, 19·3–37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000–183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000–532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill & Melinda Gates Foundation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                01 November 2018
                2018
                : 9
                : 530
                Affiliations
                [1] 1Department of Medicine and Surgery, University of Milano-Bicocca , Milan, Italy
                [2] 2Division of Psychiatry, University College London , London, United Kingdom
                Author notes

                Edited by: Andrea Fiorillo, Università degli Studi della Campania “Luigi Vanvitelli” Naples, Italy

                Reviewed by: Janne Kaergaard Mortensen, Aarhus University, Denmark; Alejandro Magallares, Universidad Nacional de Educación a Distancia (UNED), Spain

                *Correspondence: Francesco Bartoli f.bartoli@ 123456campus.unimib.it

                This article was submitted to Psychosomatic Medicine, a section of the journal Frontiers in Psychiatry

                Article
                10.3389/fpsyt.2018.00530
                6221899
                30443225
                089d0f94-9c29-4f47-9e85-b02a55df9eae
                Copyright © 2018 Bartoli, Di Brita, Crocamo, Clerici and Carrà.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 July 2018
                : 05 October 2018
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 51, Pages: 7, Words: 4797
                Categories
                Psychiatry
                Systematic Review

                Clinical Psychology & Psychiatry
                stroke,depression,mortality,meta-analysis,meta-regression
                Clinical Psychology & Psychiatry
                stroke, depression, mortality, meta-analysis, meta-regression

                Comments

                Comment on this article