3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Phototherapy is a promising strategy for cancer therapy by reactive oxygen species (ROS) of photodynamic therapy (PDT) and hyperthermia of photothermal therapy (PTT). However, the therapeutic efficacy was restricted by tumor hypoxia and thermal resistance of increased expression of heat shock protein (Hsp). In this study, we developed albumin nanoparticles to combine hypoxia relief and heat shock protein inhibition to overcome these limitations for phototherapy enhancement.

          Results

          Near-infrared photosensitizer (IR780) and gambogic acid (GA, Hsp90 inhibitor) were encapsulated into albumin nanoparticles via hydrophobic interaction, which was further deposited MnO 2 on the surface to form IGM nanoparticles. Both in vitro and in vivo studies demonstrated that IGM could catalyze overexpress of hydrogen peroxide to relive hypoxic tumor microenvironment. With near infrared irradiation, the ROS generation was significantly increase for PDT enhancement. In addition, the release of GA was promoted by irradiation to bind with Hsp90, which could reduce cell tolerance to heat for PTT enhancement. As a result, IGM could achieve better antitumor efficacy with enhanced PDT and PTT.

          Conclusion

          This study develops a facile approach to co-deliver IR780 and GA with self-assembled albumin nanoparticles, which could relive hypoxia and suppress Hsp for clinical application of cancer phototherapy.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer

          The development, perspectives, and challenges of photothermal therapy (PTT) and photoacoustic imaging (PAI) via nanotheranostics for combating cancer. The nonradiative conversion of light energy into heat (photothermal therapy, PTT) or sound energy (photoacoustic imaging, PAI) has been intensively investigated for the treatment and diagnosis of cancer, respectively. By taking advantage of nanocarriers, both imaging and therapeutic functions together with enhanced tumour accumulation have been thoroughly studied to improve the pre-clinical efficiency of PAI and PTT. In this review, we first summarize the development of inorganic and organic nano photothermal transduction agents (PTAs) and strategies for improving the PTT outcomes, including applying appropriate laser dosage, guiding the treatment via imaging techniques, developing PTAs with absorption in the second NIR window, increasing photothermal conversion efficiency (PCE), and also increasing the accumulation of PTAs in tumours. Second, we introduce the advantages of combining PTT with other therapies in cancer treatment. Third, the emerging applications of PAI in cancer-related research are exemplified. Finally, the perspectives and challenges of PTT and PAI for combating cancer, especially regarding their clinical translation, are discussed. We believe that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve our ability to combat cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Albumin-based nanoparticles as potential controlled release drug delivery systems.

            Albumin, a versatile protein carrier for drug delivery, has been shown to be nontoxic, non-immunogenic, biocompatible and biodegradable. Therefore, it is ideal material to fabricate nanoparticles for drug delivery. Albumin nanoparticles have gained considerable attention owing to their high binding capacity of various drugs and being well tolerated without any serious side-effects. The current review embodies an in-depth discussion of albumin nanoparticles with respect to types, formulation aspects, major outcomes of in vitro and in vivo investigations as well as site-specific drug targeting using various ligands modifying the surface of albumin nanoparticles with special insights to the field of oncology. Specialized nanotechnological techniques like desolvation, emulsification, thermal gelation and recently nano-spray drying, nab-technology and self-assembly that have been investigated for fabrication of albumin nanoparticles, are also discussed. Nanocomplexes of albumin with other components in the area of drug delivery are also included in this review. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy

              Despite its clinical promise, photodynamic therapy (PDT) suffers from a key drawback associated with its oxygen-dependent nature, which limits its effective use against hypoxic tumors. Moreover, both PDT-mediated oxygen consumption and microvascular damage further increase tumor hypoxia and, thus, impede therapeutic outcomes. In recent years, numerous investigations have focused on strategies for overcoming this drawback of PDT. These efforts, which are summarized in this review, have produced many innovative methods to avoid the limits of PDT associated with hypoxia.
                Bookmark

                Author and article information

                Contributors
                zhang.gutian@nju.edu.cn
                lijinlong1028@126.com
                Journal
                J Nanobiotechnology
                J Nanobiotechnology
                Journal of Nanobiotechnology
                BioMed Central (London )
                1477-3155
                6 January 2021
                6 January 2021
                2021
                : 19
                : 9
                Affiliations
                [1 ]GRID grid.41156.37, ISNI 0000 0001 2314 964X, Department of Urology, Drum Tower Hospital, , Medical School of Nanjing University, ; Nanjing, 210008 China
                [2 ]Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003 China
                [3 ]GRID grid.263826.b, ISNI 0000 0004 1761 0489, Department of Urology, Drum Tower Hospital, , Medical School of Southeast University, ; Nanjing, 210008 China
                Author information
                http://orcid.org/0000-0002-0425-8397
                Article
                749
                10.1186/s12951-020-00749-5
                7789325
                33407570
                09024440-4aac-40e3-9b17-be4c28c4c810
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 10 September 2020
                : 8 December 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81703088
                Award ID: 11774167
                Award Recipient :
                Funded by: Medical Science and Technology Development Foundation, Nanjing Department of Health
                Award ID: YKK19110
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Biotechnology
                Biotechnology

                Comments

                Comment on this article