13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sterol-Response Pathways Mediate Alkaline Survival in Diverse Fungi

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The work described here further elucidates how microorganisms sense and adapt to changes in their environment to establish infections in the human host. Specifically, we uncover a novel mechanism by which an opportunistic human fungal pathogen, Cryptococcus neoformans, responds to increases in extracellular pH in order to survive and thrive within the relatively alkaline environment of the human lung. This mechanism, which is intimately linked with fungal membrane sterol homeostasis, is independent of the previously well-studied alkaline response Rim pathway. Furthermore, this ergosterol-dependent alkaline pH response is present in Candida albicans, indicating that this mechanism spans diverse fungal species. These results are also relevant for novel antimicrobial drug development as we show that currently used ergosterol-targeting antifungals are more active in alkaline environments.

          ABSTRACT

          The ability for cells to maintain homeostasis in the presence of extracellular stress is essential for their survival. Stress adaptations are especially important for microbial pathogens to respond to rapidly changing conditions, such as those encountered during the transition from the environment to the infected host. Many fungal pathogens have acquired the ability to quickly adapt to changes in extracellular pH to promote their survival in the various microenvironments encountered during a host infection. For example, the fungus-specific Rim/Pal alkaline response pathway has been well characterized in many fungal pathogens, including Cryptococcus neoformans. However, alternative mechanisms for sensing and responding to host pH have yet to be extensively studied. Recent observations from a genetic screen suggest that the C. neoformans sterol homeostasis pathway is required for growth at elevated pH. This work explores interactions among mechanisms of membrane homeostasis, alkaline pH tolerance, and Rim pathway activation. We find that the sterol homeostasis pathway is necessary for growth in an alkaline environment and that an elevated pH is sufficient to induce Sre1 activation. This pH-mediated activation of the Sre1 transcription factor is linked to the biosynthesis of ergosterol but is not dependent on Rim pathway signaling, suggesting that these two pathways are responding to alkaline pH independently. Furthermore, we discover that C. neoformans is more susceptible to membrane-targeting antifungals under alkaline conditions, highlighting the impact of microenvironmental pH on the treatment of invasive fungal infections. Together, these findings further connect membrane integrity and composition with the fungal pH response and pathogenesis.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          pH sensing and regulation in cancer

          Cells maintain intracellular pH (pHi) within a narrow range (7.1–7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FungiDB: an integrated functional genomics database for fungi

            FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal ‘Zygomycete’ lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of sterol synthesis in eukaryotes.

              Cholesterol is an essential component of mammalian cell membranes and is required for proper membrane permeability, fluidity, organelle identity, and protein function. Cells maintain sterol homeostasis by multiple feedback controls that act through transcriptional and posttranscriptional mechanisms. The membrane-bound transcription factor sterol regulatory element binding protein (SREBP) is the principal regulator of both sterol synthesis and uptake. In mammalian cells, the ER membrane protein Insig has emerged as a key component of homeostatic regulation by controlling both the activity of SREBP and the sterol-dependent degradation of the biosynthetic enzyme HMG-CoA reductase. In this review, we focus on recent advances in our understanding of the molecular mechanisms of the regulation of sterol synthesis. A comparative analysis of SREBP and HMG-CoA reductase regulation in mammals, yeast, and flies points toward an equilibrium model for how lipid signals regulate the activity of sterol-sensing proteins and their downstream effectors.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                mBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                16 June 2020
                May-Jun 2020
                : 11
                : 3
                : e00719-20
                Affiliations
                [a ]Departments of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
                [b ]Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
                [c ]Faculty of Ceilândia, University of Brasília, Brasília, Federal District, Brazil
                University of Toronto
                Author notes
                Address correspondence to J. Andrew Alspaugh, andrew.alspaugh@ 123456duke.edu .
                Author information
                https://orcid.org/0000-0002-9175-8209
                https://orcid.org/0000-0003-3009-627X
                Article
                mBio00719-20
                10.1128/mBio.00719-20
                7298709
                32546619
                094c3880-c5f5-49d8-a915-0e4dc85db48f
                Copyright © 2020 Brown et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 25 March 2020
                : 15 May 2020
                Page count
                supplementary-material: 5, Figures: 7, Tables: 3, Equations: 0, References: 103, Pages: 21, Words: 14886
                Funding
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: R01 AI074677
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: 1F31A140427-01A1
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: P01 AI104533
                Award Recipient :
                Categories
                Research Article
                Host-Microbe Biology
                Custom metadata
                May/June 2020

                Life sciences
                cryptococcus neoformans,ergosterol,fungal genetics,membrane,ph homeostasis
                Life sciences
                cryptococcus neoformans, ergosterol, fungal genetics, membrane, ph homeostasis

                Comments

                Comment on this article