6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of CBF1, CBF2, CBF3 and CBF4 expression in some grapevine cultivars and species under cold stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • We compare three genotype after cold stress.

          • We found that CBFs have vital rule in cold resistance.

          • CBFs have different trend expression for each genotype.

          • Riparia and Khalili-Danehdar had high CBFs expression compare with Shahroodi.

          Abstract

          Grapevine, an important horticultural crop in the world, is moderately tolerant to cold conditions and is subjected to the cold injuries at different regions. So studies on different aspects of tolerance mechanism to unexpected cold of late spring as well as winter freezing seems necessary about this vine. For this reason, study on genes responsible for acquiring cold tolerance is very important. Transcription factors are among regulatory proteins that are responsible for cold acclimation. In this research work, expression levels of CBF1, CBF2, CBF3, and CBF4 transcription factors were studied on two cvs of Vitis vinifera (“Khalili-Danedar” and “Shahroodi”) as well as one Vitis riparia at different times after treating at 4 °C. Results showed that two vinifera cultivars, “Khalili-Danedar” and “Shahroodi”, had similar trend for each transcription factor. Gene expression increased at the beginning of cold stress and then decreased. Expression of these TF started some minutes (CBF1) after cold treatment and continued for several hours (CBF2), even till the tenth day (CBF4). All together V. riparia which is endemic to the cold regions behaved stronger and showed higher expression for all studied transcription factors. Among two V. vinifera cultivars, “Khalili-Danedar” showed significantly higher expression compared with “Shahroodi”. The comparison of expression levels of these four transcription factors revealed that the least and the greatest expressions were recorded for CBF1 and CBF3 respectively, and two CBF2 and CBF4 had approximately the same expression levels.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Gene networks involved in drought stress response and tolerance.

          Plants respond to survive under water-deficit conditions via a series of physiological, cellular, and molecular processes culminating in stress tolerance. Many drought-inducible genes with various functions have been identified by molecular and genomic analyses in Arabidopsis, rice, and other plants, including a number of transcription factors that regulate stress-inducible gene expression. The products of stress-inducible genes function both in the initial stress response and in establishing plant stress tolerance. In this short review, recent progress resulting from analysis of gene expression during the drought-stress response in plants as well as in elucidating the functions of genes implicated in the stress response and/or stress tolerance are summarized. A description is also provided of how various genes involved in stress tolerance were applied in genetic engineering of dehydration stress tolerance in transgenic Arabidopsis plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression.

            DRE/CRT is a cis-acting element that is involved in gene expression responsive to drought and low-temperature stress in higher plants. DREB1A/CBF3 and DREB2A are transcription factors that specifically bind to DRE/CRT in Arabidopsis. We precisely analyzed the DNA-binding specificity of DREBs. Both DREBs specifically bound to six nucleotides (A/GCCGAC) of DRE. However, these proteins had different binding specificities to the second or third nucleotides of DRE. Gel mobility shift assay using mutant DREB proteins showed that the two amino acids, valine and glutamic acid conserved in the ERF/AP2 domains, especially valine, have important roles in DNA-binding specificity. In the Arabidopsis genome, 145 DREB/ERF-related proteins are encoded. These proteins were classified into five groups-AP-2 subfamily, RAV subfamily, DREB subfamily, ERF subfamily, and others. The DREB subfamily included three novel DREB1A- and six DREB2A-related proteins. We analyzed expression of novel genes for these proteins and discuss their roles in stress-responsive gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression.

              The transcription factors DREBs/CBFs specifically interact with the dehydration-responsive element/C-repeat (DRE/CRT) cis-acting element (core motif: G/ACCGAC) and control the expression of many stress-inducible genes in Arabidopsis. In rice, we isolated five cDNAs for DREB homologs: OsDREB1A, OsDREB1B, OsDREB1C, OsDREB1D, and OsDREB2A. Expression of OsDREB1A and OsDREB1B was induced by cold, whereas expression of OsDREB2A was induced by dehydration and high-salt stresses. The OsDREB1A and OsDREB2A proteins specifically bound to DRE and activated the transcription of the GUS reporter gene driven by DRE in rice protoplasts. Over-expression of OsDREB1A in transgenic Arabidopsis induced over-expression of target stress-inducible genes of Arabidopsis DREB1A resulting in plants with higher tolerance to drought, high-salt, and freezing stresses. This indicated that OsDREB1A has functional similarity to DREB1A. However, in microarray and RNA blot analyses, some stress-inducible target genes of the DREB1A proteins that have only ACCGAC as DRE were not over-expressed in the OsDREB1A transgenic Arabidopsis. The OsDREB1A protein bound to GCCGAC more preferentially than to ACCGAC whereas the DREB1A proteins bound to both GCCGAC and ACCGAC efficiently. The structures of DREB1-type ERF/AP2 domains in monocots are closely related to each other as compared with that in the dicots. OsDREB1A is potentially useful for producing transgenic monocots that are tolerant to drought, high-salt, and/or cold stresses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Sci Hortic (Amsterdam)
                Sci. Hortic
                Scientia Horticulturae
                International Society for Horticultural Science
                0304-4238
                14 December 2015
                14 December 2015
                : 197
                : 521-526
                Affiliations
                [a ]University of Tehran, Iran
                [b ]National Institue of Genetic Engineering and Biotechnology, Iran
                [c ]Jahrom University, Iran
                Author notes
                [* ]Corresponding author. Mkarimia61@ 123456gmail.com
                Article
                S0304-4238(15)30241-7
                10.1016/j.scienta.2015.10.011
                4784723
                26973374
                0987d321-c6bf-45fe-9cb3-84afc695150d
                © 2015 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 6 July 2015
                : 5 October 2015
                : 6 October 2015
                Categories
                Article

                grape,transcription factors,cold stress,gene expression,cbf genes

                Comments

                Comment on this article