11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using a small, consumer-grade drone to identify and count marine megafauna in shallow habitats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT: Large-bodied animals, megafauna, are disproportionately threatened and yet, remain relatively difficult to monitor, particularly true in the ocean. Consumer-grade drones have high definition imagery and offer a non-invasive way to monitor a subset of marine megafauna, especially those species that spend part of their life near the water’s surface. However, a key question is the extent to which drone imagery data offer reliable abundance estimates due to potential detection restraints, and the ability to compare data from different locations. Here we tested the efficacy of a quadcopter drone to collect megafauna abundance data in multiple shallow-water habitats in the realistic background variation of shoreline development. On Great Abaco Island, The Bahamas we repeated drone surveys in nearshore habitats from June to August 2015 at three paired high and low human population sites. We tested the drone's detection probability using decoy organisms and found no effect of water quality or benthic characteristics on detectability. In short, the drones appear to work to monitor these species. We also noted patterns in the occupancy of the species on which we focused. We observed three shark, two ray, and two sea turtle species, finding higher abundances of all species in our low human population sites compared to high human population sites. Our results highlight the ability of consumer-grade drones to estimate the abundance and distribution of large-bodied elasmobranchs and sea turtles in shallow water habitats. Further, our study supports their capability to evaluate issues related to the conservation and management of nearshore ecosystems.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Responses of coral reefs and reef organisms to sedimentation

          CS Rogers (1990)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Dawn of Drone Ecology: Low-Cost Autonomous Aerial Vehicles for Conservation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study

              Aerial surveys of marine mammals are routinely conducted to assess and monitor species’ habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as ‘certain’ (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Journal
                lajar
                Latin american journal of aquatic research
                Lat. Am. J. Aquat. Res.
                Pontificia Universidad Católica de Valparaíso. Facultad de Recursos Naturales. Escuela de Ciencias del Mar (Valparaíso, , Chile )
                0718-560X
                December 2018
                : 46
                : 5
                : 1025-1033
                Affiliations
                [1] Raleigh North Carolina orgnameNorth Carolina State University orgdiv1Department of Applied Ecology United States
                [2] Raleigh North Carolina orgnameNorth Carolina State University orgdiv1Department of Marine, Earth, and Atmospheric Sciences United States
                Article
                S0718-560X2018000501025
                10.3856/vol46-issue5-fulltext-15
                0992ae29-b27c-4611-b0c3-88c82fc40d3e

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 01 May 2017
                : 24 June 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 30, Pages: 9
                Product

                SciELO Chile

                Categories
                Research Articles

                Unmanned Aerial Vehicles (UAVs),non-invasive monitoring,human impacts

                Comments

                Comment on this article