85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study

      research-article
      , PhD a , * , , , PhD b , , , PhD c , , , Prof, PhD d , , BSc a , , MSc c , , PhD c , , PhD b , , MSc e , , MD c , , MD c , , PhD b , m , , PhD f , , PhD a , h , , MSc a , , Prof, PhD g , i , , PhD j , , DVM k , , PhD e , , Prof, PhD e , , Prof, PhD b , m , , PhD l , , Prof, MD c , , Prof, PhD a , b
      The Lancet. Infectious Diseases
      Elsevier Ltd.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          A new betacoronavirus—Middle East respiratory syndrome coronavirus (MERS-CoV)—has been identified in patients with severe acute respiratory infection. Although related viruses infect bats, molecular clock analyses have been unable to identify direct ancestors of MERS-CoV. Anecdotal exposure histories suggest that patients had been in contact with dromedary camels or goats. We investigated possible animal reservoirs of MERS-CoV by assessing specific serum antibodies in livestock.

          Methods

          We took sera from animals in the Middle East (Oman) and from elsewhere (Spain, Netherlands, Chile). Cattle (n=80), sheep (n=40), goats (n=40), dromedary camels (n=155), and various other camelid species (n=34) were tested for specific serum IgG by protein microarray using the receptor-binding S1 subunits of spike proteins of MERS-CoV, severe acute respiratory syndrome coronavirus, and human coronavirus OC43. Results were confirmed by virus neutralisation tests for MERS-CoV and bovine coronavirus.

          Findings

          50 of 50 (100%) sera from Omani camels and 15 of 105 (14%) from Spanish camels had protein-specific antibodies against MERS-CoV spike. Sera from European sheep, goats, cattle, and other camelids had no such antibodies. MERS-CoV neutralising antibody titres varied between 1/320 and 1/2560 for the Omani camel sera and between 1/20 and 1/320 for the Spanish camel sera. There was no evidence for cross-neutralisation by bovine coronavirus antibodies.

          Interpretation

          MERS-CoV or a related virus has infected camel populations. Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection.

          Funding

          European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.

          Although the finding of severe acute respiratory syndrome coronavirus (SARS-CoV) in caged palm civets from live animal markets in China has provided evidence for interspecies transmission in the genesis of the SARS epidemic, subsequent studies suggested that the civet may have served only as an amplification host for SARS-CoV. In a surveillance study for CoV in noncaged animals from the wild areas of the Hong Kong Special Administration Region, we identified a CoV closely related to SARS-CoV (bat-SARS-CoV) from 23 (39%) of 59 anal swabs of wild Chinese horseshoe bats (Rhinolophus sinicus) by using RT-PCR. Sequencing and analysis of three bat-SARS-CoV genomes from samples collected at different dates showed that bat-SARS-CoV is closely related to SARS-CoV from humans and civets. Phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b CoV, distantly related to known group 2 CoV. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike genes, ORF 3 and ORF 8, which are the regions where most variations also were observed between human and civet SARS-CoV genomes. In addition, the presence of a 29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats by using an enzyme immunoassay. Neutralizing antibody to human SARS-CoV also was detected in bats with lower viral loads. Precautions should be exercised in the handling of these animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus

            In September 2012, the World Health Organization reported the first cases of pneumonia caused by the novel Middle East respiratory syndrome coronavirus (MERS-CoV). We describe a cluster of health care-acquired MERS-CoV infections. Medical records were reviewed for clinical and demographic information and determination of potential contacts and exposures. Case patients and contacts were interviewed. The incubation period and serial interval (the time between the successive onset of symptoms in a chain of transmission) were estimated. Viral RNA was sequenced. Between April 1 and May 23, 2013, a total of 23 cases of MERS-CoV infection were reported in the eastern province of Saudi Arabia. Symptoms included fever in 20 patients (87%), cough in 20 (87%), shortness of breath in 11 (48%), and gastrointestinal symptoms in 8 (35%); 20 patients (87%) presented with abnormal chest radiographs. As of June 12, a total of 15 patients (65%) had died, 6 (26%) had recovered, and 2 (9%) remained hospitalized. The median incubation period was 5.2 days (95% confidence interval [CI], 1.9 to 14.7), and the serial interval was 7.6 days (95% CI, 2.5 to 23.1). A total of 21 of the 23 cases were acquired by person-to-person transmission in hemodialysis units, intensive care units, or in-patient units in three different health care facilities. Sequencing data from four isolates revealed a single monophyletic clade. Among 217 household contacts and more than 200 health care worker contacts whom we identified, MERS-CoV infection developed in 5 family members (3 with laboratory-confirmed cases) and in 2 health care workers (both with laboratory-confirmed cases). Person-to-person transmission of MERS-CoV can occur in health care settings and may be associated with considerable morbidity. Surveillance and infection-control measures are critical to a global public health response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Coronavirus Genomics and Bioinformatics Analysis

              The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb) among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid) and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999–2002, with estimated substitution rate of 4×10−4 to 2×10−2 substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV), between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV) type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1). Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Infect Dis
                Lancet Infect Dis
                The Lancet. Infectious Diseases
                Elsevier Ltd.
                1473-3099
                1474-4457
                9 August 2013
                October 2013
                9 August 2013
                : 13
                : 10
                : 859-866
                Affiliations
                [a ]Centre for Infectious Disease Research, Diagnostics and Screening, Division Virology, National Institute for Public Health and the Environment, Bilthoven, Netherlands
                [b ]Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
                [c ]Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
                [d ]Department of Animal Medicine and Surgery, Veterinary Faculty, University of Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain
                [e ]Department of Infectious Diseases and Immunology, Utrecht University, Faculty of Veterinary Medicine, Utrecht, Netherlands
                [f ]Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
                [g ]Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
                [h ]The European Programme for Public Health Microbiology Training, European Center for Disease Control, Stockholm, Sweden
                [i ]Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
                [j ]Animal Health Service, Deventer, Netherlands
                [k ]Department of Conservation and Research, Parque Zoologico Buin Zoo, Buin, Chile
                [l ]SaBio-IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
                [m ]Viroclinics Biosciences BV, Rotterdam, Netherlands
                Author notes
                [* ]Correspondence to: Chantal Reusken, Centre for Infectious Disease Research, Diagnostics and Screening, Division Virology, National Institute for Public Health and the Environment, PO Box 1, 3720BA, Bilthoven, Netherlands Chantal.Reusken@ 123456RIVM.nl
                [†]

                Contributed equally

                Article
                S1473-3099(13)70164-6
                10.1016/S1473-3099(13)70164-6
                7106530
                23933067
                09b28deb-a593-4b07-b943-44a56ac871f3
                Copyright © 2013 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article