3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FOXC1-induced LINC01123 acts as a mediator in triple negative breast cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          MicroRNAs (miRNAs) representing a subclass of non-coding RNAs are dynamically expressed and participate in multiple pathological responses, whereas, the expression pattern or function of miRNAs has not been fully addressed in triple-negative breast cancer (TNBC). Currently we concentrate on dissecting the probable role of microRNA-663a (miR-663a) in TNBC cellular processes.

          Methods

          qRT-PCR detected the expression of miR-663a in TNBC cells. Besides, we monitored the effects of miR-663a on TNBC proliferation and apoptosis. On the basis of bioinformatics assistance and mechanical validation, we identified the miRNA-sponging role of LINC01123 and downstream target of miR-663a in TNBC was assessed and verified. The transcription activation of was explored via ChIP and luciferase reporter assays.

          Results

          In comparison to MCF-10A, we certified the downregulation of miR-663a in TNBC cell lines. Augmentation of miR-663a was anti-proliferation and pro-apoptosis in TNBC cell lines. LINC01123 protected CMIP against miR-663a suppression through acting as a sponge of miR-663a in TNBC. LINC01123 was transcriptionally induced by FOXC1. Rescue experiment proved that miR-663a suppression or CMIP (c-Maf inducing protein) enhancement could countervail LINC01123 depletion-mediated effects on TNBC cellular processes.

          Conclusion

          LINC01123, activated by FOXC1, regulated TNBC growth through miR-663a/CMIP signaling, which unveiled a new functional pathway of FOXC1-induced LINC01123/miR-663a/CMIP in TNBC.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          LncRNA LINC00460 promotes EMT in head and neck squamous cell carcinoma by facilitating peroxiredoxin-1 into the nucleus

          Background The lncRNA LINC00460 plays crucial roles in several epithelial cancers, although its mechanisms of action differ greatly in different cellular contexts. In this study, we aimed to determine the potential clinical applications of LINC00460 and elucidate the mechanisms by which LINC00460 affects the development and progression of head and neck squamous cell carcinoma (HNSCC). Methods The biological functions of LINC00460 were assessed in several epithelial cancer cell lines. The subcellular localization of LINC00460 was evaluated by cell nuclear/cytoplasmic fractionation and fluorescence in situ hybridization. RNA pull-down assays, LS-MS/MS analysis, and RNA and chromatin immunoprecipitation assays were performed to identify the molecular mechanism by which LINC00460 promotes HNSCC progression. The clinical pathological features of LINC00460 and PRDX1 were evaluated in HNSCC tissues and paired adjacent normal tissues. Results LINC00460 enhanced HNSCC cell proliferation and metastasis in vitro and in vivo and induced epithelial–mesenchymal transition (EMT). LINC00460 primarily localized within the cytoplasm of HNSCC cells, physically interacted with PRDX1 and facilitated PRDX1 entry into the nucleus. PRDX1 promoted the transcription of LINC00460, forming a positive feedback loop. In addition, PRDX1 also promoted the transcription of EMT-related genes (such as ZEB1, ZEB2 and VIM) through enrichment on gene promoters in the nucleus. LINC00460 effectively induced HNSCC cell EMT in a PRDX1-dependent manner, and PRDX1 mainly mediated the EMT-promoting effect of LINC00460. High levels of LINC00460 and PRDX1 expression were positively associated with lymph metastasis, pathological differentiation and tumor size in HNSCC patients. Conclusions LINC00460 promoted EMT in HNSCC cells by facilitating PRDX1 entry into the nucleus. LINC00460 and PRDX1 are promising candidate prognostic predictors and potential targets for cancer therapy for HNSCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1364-z) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            LncRNA AFAP1-AS1 promotes tumorigenesis and epithelial-mesenchymal transition of osteosarcoma through RhoC/ROCK1/p38MAPK/Twist1 signaling pathway

            Background An increasing number of studies have demonstrated that long non-coding RNAs (lncRNAs) play pivotal roles in cancer onset and development. LncRNA AFAP1-AS1 has been validated to be abnormally upregulated and play oncogenic roles in various malignant tumors. The biological role and mechanism of AFAP1-AS1 in OS (osteosarcoma) remains unclear. Methods Quantitative reverse transcription PCR (qRT-PCR) is applied to examine AFAP1-AS1 expression in OS tissues and OS cell lines. The function of AFAP1-AS1 in OS cells is investigated via in-vitro and in-vivo assays. Western bolt and rescue experiments are applied to detect the expression changes of key molecules including epithelial-mesenchymal transition markers and identify the underlying molecular mechanism. RNA immunoprecipitation is performed to reveal the interaction between AFAP1-AS1 and RhoC. Results AFAP1-AS1 expression is upregulated in human OS tissues and cell lines. AFAP1-AS1 knockdown induces OS cell apoptosis and cell cycle G0/G1 arrest, suppresses OS cells growth, migration, invasion, vasculogenic mimicry formation and epithelial-mesenchymal transition (EMT), and affects actin filament integrity. AFAP1-AS1 knockdown suppresses OS tumor formation and growth in nude mice. AFAP1-AS1 knockdown elicits a signaling inhibition including decreased levels of RhoC, ROCK1, p38MAPK and Twist1. Moreover, AFAP1-AS1 interacts with RhoC. Overexpression of RhoC can partly reverse AFAP1-AS1 downregulation-induced cell EMT inhibition. Conclusions AFAP1-AS1 is overexpressed in osteosarcoma and plays an oncogenic role in osteosarcoma through RhoC/ROCK1/p38MAPK/Twist1 signaling pathway, in which RhoC acts as the interaction target of AFAP1-AS1. Our findings indicated a novel molecular mechanism underlying the tumorigenesis and progression of osteosarcoma. AFAP1-AS1 could serve as a promising therapeutic target in OS treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1363-0) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hypoxia-induced feedback of HIF-1α and lncRNA-CF129 contributes to pancreatic cancer progression through stabilization of p53 protein

              Rationale: Emerging evidences have highlighted the critical roles of lncRNAs in human cancer development. The work sought to assess the biological role and potential underlying mechanisms of lncRNA-CF129 (CF129) which is significantly reduced in pancreatic cancer (PC). Methods: CF129 expression and its association with multiple clinicopathologic characteristics in PC specimens were analyzed. The role of CF129 both in vitro and in vivo was assessed, with RNA pull-down and immunoprecipitation assays being performed to detect the interaction between CF129 and p53 and E3 ligase MKRN1. Chromatin immunoprecipitation and luciferase assays were utilized to identify the interaction between p53 and FOXC2 promoter, HIF-1α/HDAC1 complex and CF129 promoter, FOXC2 and HIF-1α promoter, respectively. Results: CF129 levels were markedly lower in PC compared with paired non-tumor adjacent tissues. Low CF129 expression predicted short overall survival in PC patients. CF129 inhibited invasion and metastasis of PC cells in a FOXC2-dependent manner. In addition, CF129 regulates FOXC2 transcription through association with mutant p53. CF129 directly binds to p53 and E3 ligase MKRN1, and such an interaction leading to p53 protein ubiquitination and degradation. Furthermore, CF129 is a hypoxia-responsive lncRNA, which is transcriptionally downregulated by binding between HIF-1α/HDAC1 complex and CF129 promoter. Finally, it is revealed that HIF-1α is reciprocally regulated by FOXC2 in transcriptional level. Clinically, CF129 downregulation coordinates overexpression of FOXC2. Conclusions: Our study suggests that CF129 inhibits pancreatic cell proliferation and invasion by suppression of FOXC2 transcription, which depends on MKRN1-mediated ubiquitin-dependent p53 degradation. The HIF-1α/CF129/ p53/FOXC2 axis may function as a potential biomarker and therapeutic target.
                Bookmark

                Author and article information

                Contributors
                rongsu8809630833@163.com
                longyi894206425@163.com
                yanbi66054@163.com
                minqianfan86@163.com
                luping375900046@163.com
                Journal
                Cancer Cell Int
                Cancer Cell Int
                Cancer Cell International
                BioMed Central (London )
                1475-2867
                29 May 2020
                29 May 2020
                2020
                : 20
                : 199
                Affiliations
                [1 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Department of Breast Surgery, West China Hospital/West China School of Medicine, , Sichuan University, ; No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
                [2 ]GRID grid.54549.39, ISNI 0000 0004 0369 4060, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, , University of Electronic Science and Technology of China, ; Chengdu, 610041 People’s Republic of China
                Author information
                http://orcid.org/0000-0002-4734-6549
                Article
                1258
                10.1186/s12935-020-01258-z
                7257197
                09c7a0fc-e99f-4cfc-9d50-20a6a4eb3673
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 18 November 2019
                : 12 May 2020
                Funding
                Funded by: Sichuan provincial health and family planning commission project
                Award ID: 17PJ203
                Award Recipient :
                Categories
                Primary Research
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                foxc1,linc01123,mir-663a,cmip,tnbc
                Oncology & Radiotherapy
                foxc1, linc01123, mir-663a, cmip, tnbc

                Comments

                Comment on this article